

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Patrick Schnider

Introduction to Topological Data Analysis Scribe Notes 9 FS23

Scribe notes by Simon Weber. Please contact me for corrections. Lecture date: March 23, 2023 Last update: Thursday 23rd March, 2023, 13:55

A filtration is a nested sequence of subspaces:

 $\mathcal{F}: X_0 \subseteq X_1 \subseteq X_2 \subseteq \ldots \subseteq X_n = X$

For each $i\leq j,$ we have the inclusion map $\iota_{i,j}:X_i\hookrightarrow X_j.$

Given these functions $\iota,$ we get induced maps in homology: $h_p^{i,j}=\iota_*:H_p(X_i)\to H_p(X_j).$

Given a function $f: X \to \mathbb{R}$, we can define the (uncountably infinite) sublevel set filtration $X_a = f^{-1}(-\infty, a]$.

A simplicial filtration is a nested sequence of subcomplexes:

$$\mathcal{F}: \mathsf{K}_0 \subseteq \mathsf{K}_1 \subseteq \ldots \subseteq \mathsf{K}_n = \mathsf{K}$$

We call a simplicial filtration *simplex-wise*, if $K_i \setminus K_{i-1}$ is a single simplex (or empty).

We call a function $f : K \to \mathbb{R}$ simplex-wise monotone if for every $\sigma \subseteq \tau$ we have $f(\sigma) \leq f(\tau)$. A simplex-wise monotone function guarantees us that the sublevel set filtration by f gives a proper simplicial filtration. Note that it does not necessarily guarantee us that the sublevel set filtration is simplex-wise (e.g., consider a function f that is not injective).

We can also define a simplicial filtration by ordering our vertices v_0, v_1, \ldots, v_n . Then, let K_i be the simplicial complex induced by the vertices v_0, \ldots, v_i . Then, we call the simplices $K_i \setminus K_{i-1}$ added when adding v_i the *lower star* of v_i . Thus, this type of filtration is also called the *lower star filtration*.

Definition 1. Let (M, d) be a metric space. Let P be a finite subset of M, and r > 0 a real number. The Čech complex $\mathbb{C}^r(P)$ is the nerve of the family of balls $B(p, r) = \{x \in M | d(p, x) \leq r\}$ for all $p \in P$.

Since the balls B(p,r) form a good cover, the nerve theorem tells us that the Čech complex is homotopy equivalent to the union of the balls.

By looking at the sequence of $\check{C}ech$ complexes for increasing r, we get a simplicial filtration.

Definition 2. The p-th persistent homology group $H_p^{i,j}\ \text{is defined by}$

$$H_p^{i,j} := \operatorname{im} h_p^{i,j} = Z_p(K_i) / (B_p(K_j) \cap Z_p(K_i)).$$

This definition characterizes the cycles that that are present already in $K_{\rm i}$ and that are not boundaries even in $K_{\rm j}.$

Definition 3. The p-th persistent Betti numbers $\beta_p^{i,j}$ are the dimensions of the p-th persistent homology groups: $\beta_p^{i,j} = \dim H_p^{i,j}$.