Institute of Theoretical Computer Science
Patrick Schnider

Scribe notes by Simon Weber. Please contact me for corrections.
Lecture date: March 23, 2023
Last update: Thursday $23^{\text {rd }}$ March, 2023, 13:55
A filtration is a nested sequence of subspaces:

$$
\mathcal{F}: X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \ldots \subseteq X_{n}=X
$$

For each $\mathfrak{i} \leq \mathfrak{j}$, we have the inclusion map $\mathfrak{t}_{\mathrm{i}, \mathrm{j}}: \mathrm{X}_{\mathrm{i}} \hookrightarrow \mathrm{X}_{\mathrm{j}}$.
Given these functions l , we get induced maps in homology: $h_{p}^{i, j}=\iota_{*}: H_{p}\left(X_{i}\right) \rightarrow H_{p}\left(X_{j}\right)$.
Given a function $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$, we can define the (uncountably infinite) sublevel set filtration $X_{a}=f^{-1}(-\infty, a]$.

A simplicial filtration is a nested sequence of subcomplexes:

$$
\mathcal{F}: \mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \ldots \subseteq \mathrm{~K}_{\mathrm{n}}=\mathrm{K}
$$

We call a simplicial filtration simplex-wise, if $K_{i} \backslash K_{i-1}$ is a single simplex (or empty).
We call a function $f: K \rightarrow \mathbb{R}$ simplex-wise monotone if for every $\sigma \subseteq \tau$ we have $f(\sigma) \leq f(\tau)$. A simplex-wise monotone function guarantees us that the sublevel set filtration by f gives a proper simplicial filtration. Note that it does not necessarily guarantee us that the sublevel set filtration is simplex-wise (e.g., consider a function f that is not injective).

We can also define a simplicial filtration by ordering our vertices $v_{0}, v_{1}, \ldots, v_{n}$. Then, let K_{i} be the simplicial complex induced by the vertices v_{0}, \ldots, v_{i}. Then, we call the simplices $K_{i} \backslash K_{i-1}$ added when adding v_{i} the lower star of v_{i}. Thus, this type of filtration is also called the lower star filtration.

Definition 1. Let (M, d) be a metric space. Let P be a finite subset of M, and $r>0$ a real number. The Čech complex $\mathbb{C}^{\mathrm{r}}(\mathrm{P})$ is the nerve of the family of balls $\mathrm{B}(\mathrm{p}, \mathrm{r})=$ $\{x \in M \mid d(p, x) \leq r\}$ for all $p \in P$.

Since the balls $B(p, r)$ form a good cover, the nerve theorem tells us that the Čech complex is homotopy equivalent to the union of the balls.

By looking at the sequence of Čech complexes for increasing r, we get a simplicial filtration.

Definition 2. The p-th persistent homology group $H_{p}^{i, j}$ is defined by

$$
H_{p}^{i, j}:=\operatorname{im~}_{\mathrm{p}}^{i, j}=Z_{p}\left(K_{i}\right) /\left(B_{p}\left(K_{j}\right) \cap Z_{p}\left(K_{i}\right)\right) .
$$

This definition characterizes the cycles that that are present already in K_{i} and that are not boundaries even in K_{j}.

Definition 3. The p-th persistent Betti numbers $\beta_{p}^{i, j}$ are the dimensions of the p-th persistent homology groups: $\beta_{\mathrm{p}}^{i, j}=\operatorname{dim} H_{p}^{i, j}$.

