
Institute of Theoretical Computer Science

Patrick Schnider

Introduction to Topological Data Analysis Scribe Notes 10 FS23

Scribe notes by Simon Weber. Please contact me for corrections.
Lecture date: March 24, 2023
Last update: Friday 24th March, 2023, 14:21

We say that a p-homology class [c] (a p-hole) is born at Ki if [c] 2 Hp(Ki) but [c] 2 H
i−1,i
p .

Similarly, [c] dies entering Kj, if [c] 6= 0 in Hp(Kj−1) but h
j−1,j
p ([c]) = 0.

It is not always obvious which homology class dies. If two homology classes merge, they
both do not die, but their sum dies. In some way, the de�nition depends on the choice
of basis. There is a consistent choice of basis which allows us to only look at persistent
homology in terms of basis elements, but we do not go into this here.

If we have a simplex-wise �ltration, we can sort homology classes by the time where they
were born, and when they merge, we just say the \younger one" dies. This can be seen
as adapting the considered basis along the way.

Persistence pairings are another way around this issue. We add some �nal complex Kn+1
which has trivial homology (i.e., by adding all simplices that are not yet present). Then,
we aim to �gure out how many holes get born at Ki and die entering Kj. For this, we
de�ne

µi,jp = (βi,j−1p − βi,jp ) − (βi−1,j−1p − βi−1,jp ), for i < j � n+ 1.

Here, the content of the left parenthesis denotes the number of holes born at or before
Ki, which die entering Kj. Conversely, the right parenthesis denotes the number of holes
born strictly before Ki, and die entering Kj. Thus, subtracting the two, gives the number
of holes born exactly at Ki and die entering Kj.

The persistence diagram is a birth-death diagram which contains a point for every pair i, j
for which µi,jp > 0. If we give each Ki a timestamp ai, the point is drawn at the coordinates
(ai, aj). We give each point multiplicity µi,jp . On the diagram we add points on the
diagonal with in�nite multiplicity, for some technical reasons that will only become
apparent in a few weeks.

We can also represent the same information by barcodes: For every i, j, we draw µi,jp
many intervals [ai, aj]. This is then called the p-th persistence barcode.

1



Algorithms

We consider a simple-wise �ltration. Consider some j, and let p be the dimension of the
simplex added in Kj, i.e., Kj\Kj−1 = σj is a p-simplex. There are only two things that can
happen when adding σj: Either, a new non-boundary p-cycle c (a hole) is born. Then
we say that σj is a creator. It is also possible that adding σj, a (p− 1)-cycle becomes a
boundary, thus a hole dies. Then we say that σj is a destructor. The fact that at exactly
one of the two events happens is a consequence of the Euler characteristic, which was
discussed in the Exercise Sheet 3.

The persistence pairing algorithm pairs a destructor σ with the youngest still-unpaired
creator within the cycle it destroys. To �nd this youngest unpaired creator, we look at
the boundary of σ. We try pairing σ to the youngest element ρ of its boundary. If this
element is already paired with some element τ, we replace it by the sum of ρ and the
boundary of τ. We now have a new set of candidate creators. We repeat this process
until we found an unpaired creator we can pair to, or until we cannot continue (there
are no more candidates). If we cannot pair σ to anything, it must be a new creator.
Whatever unpaired creators remain at the end of the algorithm are paired to an element∞.

What is the runtime of this algorithm? Let N be the total number of simplices in the
�nal complex of our �ltration. Whenever we add a simplex, and we replace a simplex by
the boundary of its paired destructor, we add at most O(N) simplices. We have to do
this at most O(N) times. Since we do this for each simplex, we get a runtime of O(N3).
Surprisingly, this runtime is tight.

In practice, we actually use a di�erent algorithm, which actually does the same but in
the language of matrices. This is the Matrix Reduction Algorithm. Here, the �ltration
does not necessarily have to be simplex-wise. We write a large matrix, which is N�N.
Both rows and columns are labelled by the simplices, ordered by order of insertion. We
then insert a 1 at row σ and column τ, if σ is part of the boundary of τ. For each
column, we now look at the lowest 1 in the column. If there is a 1 towards the left of
that column, add the column containing that other 1 to that column (in Z2). At the end,
empty columns then correspond to creators (births). To �nd the death of a creator, look
at its corresponding row, and �nd a pivot element in this row (a 1 which is the lowest 1
of its column). If there is no pivot element, this creator never dies, i.e., is unpaired.

Let's again look at the runtime. For each column (O(N)), we might have to add O(N)
times a column, and each addition takes O(N). So again, we have O(N3) runtime.
But, we can write the algorithm in a way such that it runs in O(Nω), where ω is the
matrix-multiplication exponent. In practice, it is essentially O(N).

2


