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Distance Metrics on Persistence Diagrams

In this section we will de�ne some distance metrics that can be used to compare di�erent
persistence diagrams.

Bottleneck Distance

Let F ,G be two �ltrations giving rise to persistence modules HpF , HpG. Let Dgmp(F)
and Dgmp(G) be their corresponding persistence diagrams. These diagrams are the
information we want to use to compare F and G.

The general idea of the bottleneck distance is to pair up points of the two persistence
diagrams, i.e., consider bijections between points of Dgmp(F) and Dgmp(G). Since we
can only �nd bijections between sets of the same cardinality, we need the two diagrams to
have the same number of points. This is where the de�nition of the persistence diagram
comes in: recall that a persistence diagram includes every possible point on the diagonal
with in�nite multiplicity. Thus, both sets of points have the same (in�nite) cardinality,
and bijections between these sets are thus well-de�ned.

To measure the \quality" or \distance" of such a bijection, we use the L∞-norm:

Definition 1. Let x = (x1, x2), y = (y1, y2) be two points in R2. Then,

||x− y||∞ := max(|x1 − y1|, |x2 − y2|),

where we say that ∞ −∞ = 0 for points with coordinates that are ∞ (i.e., points
in persistence diagrams that correspond to holes that did not die).

Definition 2. Let Π = {π : Dgmp(F) → Dgmp(G) | π is bijective} be the set of all
bijections between Dgmp(F) and Dgmp(G). Then, the Bottleneck distance is de�ned
as

db(Dgmp(F), Dgmp(G)) := inf
π2Π

sup
x2Dgmp(F)

||x− π(x)||∞.
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The Bottleneck distance thus minimizes the maximum L∞-norm of any pairing, over all
pairings of points.

Observation 3. The Bottleneck distance is a metric on the space of persistence dia-
grams with �nitely many o�-diagonal points.

Proof. We check the three properties of metrics:

1. db(X, Y) = 0 i� X = Y is simple to see, since if X = Y, every point can be matched
to its copy, and if X 6= Y, there exists some point p 2 X \ Y [ Y \ X which must be
matched to some point with positive L∞-distance to p.

2. db(X, Y) = db(Y, X) is clear by de�nition.

3. db(X, Y) � db(X,Z) + db(Z, Y). Take a bijection π1 witnessing db(X,Z) and a
bijection π2 witnessing db(Z, Y), and concatenate the two: π := π2�π1 is a bijection
X→ Y where for every x 2 X we have ||x−π(x)||∞ � ||x−π1(x)||∞+||π1(x)−π2(x)||∞.
Note that since db is an in�mum and not a minimum, there may not be π1 and π2
witnessing db. In this case, the same argument can be applied to the converging
sequences of bijections witnessing db.

Recall that simplex-wise monotone functions f, g : K→ R give rise to simplicial sublevel
set �ltrations Ff,Fg. We could now compare the persistence diagrams of these two
�ltrations using the Bottleneck distance, but we wish to de�ne a metric directly between
the two functions f, g:

Definition 4 (in�nity norm). Let f, g : X → R. Then, the in�nity norm of f − g is
de�ned as

||f− g||∞ := sup
x2X

|f(x) − g(x)|.
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The following theorem tells us that this in�nity norm and the Bottleneck distance are
closely related:

Theorem 5 (Stability for simplicial �ltrations). Let f, g : K→ R be simplex-wise mono-
tone functions. Then, 8p � 0 we have db(Dgmp(Ff), Dgmp(Fg)) � ||f− g||∞.

Proof. Let ft := (1 − t)f + tg for t 2 [0, 1] be the linear interpolation between f and g.
Note that f0 = f, f1 = g.

We �rst show that each ft is a simplex-wise monotone function. It is clearly simplex-
wise, and we prove that it is also monotone: Let σ � τ. Since f and g are monotone, we
have f(σ) � f(τ) and g(σ) � g(τ). Thus,

ft(σ) = (1− t)f(σ) + tg(σ) � (1− t)f(τ) + tg(τ) = ft(τ).

Let p � 0 be �xed. We now draw the family of persistence diagrams Dgmp(Fft) as
a multiset in R2 � [0, 1]. Each o�-diagonal point of Xt := Dgmp(Fft) is of the form
x(t) = (ft(σ), ft(τ), t) for σ being the creator and τ being the destructor. Note that the
persistence pairings (σ, τ) may only change when the order of simplex insertion changes,
which only happens �nitely many times when going from t = 0 to t = 1. Let us call
these values 0 = t0 < t1 < t2 < . . . < tn < tn+1 = 1. Without loss of generality, we
assume that at each of these values ti exactly two simplices have the same value fti .

Within each open interval (ti, ti+1) the pairings stay constant. Furthermore, every o�-
diagonal point x(t) is a linear function of t in all three coordinates, meaning that it
de�nes a line segment.

At ti+1, if x(ti+1) is an o�-diagonal point whose creator and destructor are still paired
after ti+1, x(t) continues in the same direction after ti+1.

If on the other hand x(ti+1) is an o�-diagonal point whose creator and destructor get
paired di�erently, recall by Exercise Sheet 5, Question 3, there are exactly two pairs that
swap their creators or destructors, and these creators or destructors that are swapped
must have the same value in fti+1

. In the persistence diagram, this means that two points
vertically or horizontally of each other swap creators/destructors, and there is a unique
continuing line segment for both of them.

Lastly, if x(ti+1) is on the diagonal, this means that its previous constructor and destruc-
tor now have the same value in fti+1

. There is no continuation for this point.

Every point thus moves along a polygonal path monotone in t. Every such path is called
a vine, and the multiset of all vines is called a vineyard. Based on this vineyard, we
now wish to �nd a good matching giving an upper bound on the Bottleneck distance.
We simply take the matching where we match the start point of every vine with its
endpoint. To get a bound on the Bottleneck distance, we simply need to get a bound
for the distance of each matched pair.
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Between ti and ti+1 we get for
δx(t)
δt

:

δ

δt
((1− t)(f(σ), f(τ), t)) + t(g(σ), g(τ), t)) = (g(σ) − f(σ), g(τ) − f(τ), 1)

Projecting x(ti+1) and x(ti) to R2 we get two points yi+1, yi such that

||yi+1 − yi||∞ = (ti+1 − ti) �max(g(σ) − f(σ), g(τ) − f(τ) � (ti+1 − ti) � ||f− g||∞
Thus, since || � ||∞ is a norm and ful�lls the triangle inequality, we also have that from
t = 0 to t = 1, the point can move at most ||f − g||∞. We thus have the desired bound
on the Bottleneck distance.
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