

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Patrick Schnider

Introduction to Topological Data Analysis Scribe Notes 16 FS23

Scribe notes by Simon Weber. Please contact me for corrections. Lecture date: April 27, 2023 Last update: Thursday 27th April, 2023, 14:04

We wish to slightly generalize the stability result from the last lecture to general topological spaces.

Consider some topological space X and a function $f: X \to \mathbb{R}$, which induces a sublevel set filtration for every $r \in \mathbb{R}$. We only want to consider *tame* functions: A function f is *tame* if all homology groups of sublevel sets have finite rank, and the homology groups only change at finitely many values, called *critical values*.

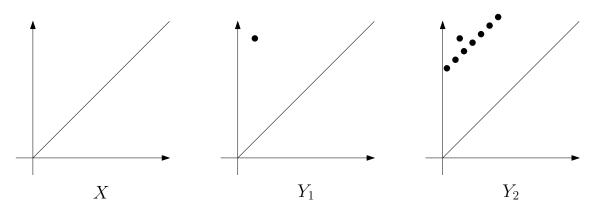
Theorem 1. Let X be a triangulable topological space, and $f,g:X\to\mathbb{R}$ be two tame functions, then $\forall p\geq 0$, we have

$$d_{\mathfrak{b}}(\mathrm{Dgm}_{\mathfrak{p}}(\mathcal{F}_{\mathfrak{f}}),\mathrm{Dgm}_{\mathfrak{p}}(\mathcal{F}_{\mathfrak{g}})) \leq \|\mathfrak{f}-\mathfrak{g}\|_{\infty}.$$

To prove this theorem, we need some more tools that we will develop in the next few lectures.

Wasserstein Distance

Consider the following three diagrams:



Which of Y_1 and Y_2 is X closer to? Intuitively, one clearly says Y_1 : There are simply fewer features in Y_1 that are not present in X. In terms of Bottleneck distance, there is only one reasonable matching between X and Y_1 , and also only one between X and Y_2 : We simply

match each off-diagonal point with its closest point on the diagonal. Since we only look at the longest edge in this matching, the Bottleneck distance $d_b(X, Y_1) = d_b(X, Y_2)$.

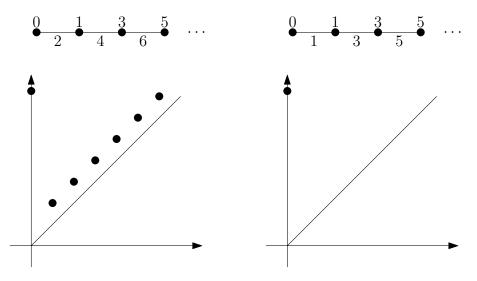
We hope to get rid of this counterintuitive behavior of the Bottleneck distance by using the Wasserstein distance.

Definition 2 (Wasserstein distance). For $p\geq 0,$ and $q\geq 1,$ the q-Wasserstein distance is defined as

$$d_{W,q}(Dgm_p(\mathcal{F}), Dgm_p(\mathcal{G})) \coloneqq \left[\inf_{\pi \in \Pi} \left(\sum_{x \in Dgm_p(\mathcal{F})} (\|x - \pi(x)\|_{\infty})^q \right) \right]^{1/q}$$

Note that for $q = \infty$, $d_{W,q} = d_b$.

We can see that the stability theorem we proved for Bottleneck distance does not hold for Wasserstein distance:



The infinity norm between the two simplex-wise monotone functions is 1, but the Wasserstein distance is unbounded for all $q < \infty$.

A similar counterexample can also be found for topological spaces, see Figure 1.

Note again that $\|f - g\|_{\infty} \leq \epsilon$, but the Wasserstein distance between the two diagrams can be made arbitrarily big.

To avoid this, we only want to consider even nicer functions:

Definition 3 (Lipschitz). Let (X, d) be a metric space. A function $f: X \to \mathbb{R}$ is Lipschitz if there exists a constant C such that $|f(x) - f(y)| \le c \cdot d(x, y)$ for all $x, y \in X$.

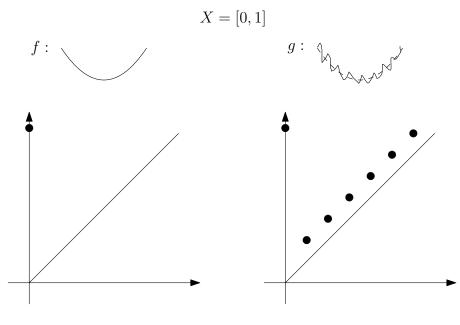


Figure 1:

Theorem 4. Let X be a triangulable, compact metric space. Let $f, g : X \to \mathbb{R}$ be Lipschitz functions. Then there exist constants C and k (that may only depend on X and on the Lipschitz constants of f, g) such that for every $p \ge 0$ and every $q \ge k$,

$$d_{W,q}(\mathrm{Dgm}_{p}(\mathcal{F}_{f}),\mathrm{Dgm}_{p}(\mathcal{F}_{g})) \leq \mathrm{C} \cdot \|\mathrm{f}-\mathrm{g}\|_{\infty}^{1-k/q}.$$

Theorem 5. Let $f,g:K\to\mathbb{R}$ be simplex-wise monotone functions. Then for all $p\geq 0$ and all $q\geq 1,$

$$d_{W,q}(Dgm_p(\mathcal{F}_f), Dgm_p(\mathcal{F}_g)) \leq \|f - g\|_q = \left(\sum_{\sigma \in K} |f(\sigma) - g(\sigma)|^q\right)^{1/q}.$$