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We wish to slightly generalize the stability result from the last lecture to general topo-
logical spaces.

Consider some topological space X and a function f : X → R, which induces a sublevel
set �ltration for every r 2 R. We only want to consider tame functions: A function f is
tame if all homology groups of sublevel sets have �nite rank, and the homology groups
only change at �nitely many values, called critical values.

Theorem 1. Let X be a triangulable topological space, and f, g : X → R be two tame
functions, then 8p � 0, we have

db(Dgmp(Ff), Dgmp(Fg)) � ||f− g||∞.
To prove this theorem, we need some more tools that we will develop in the next few
lectures.

Wasserstein Distance

Consider the following three diagrams:

X Y1 Y2

Which of Y1 and Y2 is X closer to? Intuitively, one clearly says Y1: There are simply fewer
features in Y1 that are not present in X. In terms of Bottleneck distance, there is only one
reasonable matching between X and Y1, and also only one between X and Y2: We simply
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match each o�-diagonal point with its closest point on the diagonal. Since we only look
at the longest edge in this matching, the Bottleneck distance db(X, Y1) = db(X, Y2).

We hope to get rid of this counterintuitive behavior of the Bottleneck distance by using
the Wasserstein distance.

Definition 2 (Wasserstein distance). For p � 0, and q � 1, the q-Wasserstein distance
is de�ned as

dW,q(Dgmp(F), Dgmp(G)) :=

2
4 inf
π2Π

� ∑
x2Dgmp(F)

(||x− π(x)||∞)q
�3
5
1/q

Note that for q = ∞, dW,q = db.

We can see that the stability theorem we proved for Bottleneck distance does not hold
for Wasserstein distance:

· · ·0 1 3 5
2 4 6

· · ·0 1 3 5
1 3 5

The in�nity norm between the two simplex-wise monotone functions is 1, but the Wasser-
stein distance is unbounded for all q <∞.

A similar counterexample can also be found for topological spaces, see Figure 1.

Note again that ||f − g||∞ � ε, but the Wasserstein distance between the two diagrams
can be made arbitrarily big.

To avoid this, we only want to consider even nicer functions:

Definition 3 (Lipschitz). Let (X, d) be a metric space. A function f : X→ R is Lipschitz
if there exists a constant C such that |f(x) − f(y)| � c � d(x, y) for all x, y 2 X.
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X = [0, 1]

f : g :

Figure 1:

Theorem 4. Let X be a triangulable, compact metric space. Let f, g : X → R be
Lipschitz functions. Then there exist constants C and k (that may only depend on
X and on the Lipschitz constants of f, g) such that for every p � 0 and every q � k,

dW,q(Dgmp(Ff), Dgmp(Fg)) � C � ||f− g||
1−k/q∞ .

Theorem 5. Let f, g : K→ R be simplex-wise monotone functions. Then for all p � 0
and all q � 1,

dW,q(Dgmp(Ff), Dgmp(Fg)) � ||f− g||q =
�∑
σ2K

|f(σ) − g(σ)|q
�1/q

.
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