

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Patrick Schnider

Introduction to Topological Data Analysis Scribe Notes 17 FS23

Scribe notes by Simon Weber. Please contact me for corrections. Lecture date: April 28, 2023 Last update: Tuesday 2nd May, 2023, 10:35

Interleaving Distance

Until now, we compared persistence diagrams. We will now introduce the interleaving distance, which instead compares persistence modules. Let us begin with a formal definition of persistence modules.

 $\begin{array}{l} \text{Definition 1. A persistence module } \mathbb{V} \textit{ over } \mathbb{R} \textit{ is a collection } \mathbb{V} = \{V_a\}_{a \in \mathbb{R}} \textit{ of vector spaces} \\ V_a \textit{ together with linear maps } \nu_{a,a'} : V_a \rightarrow V_{a'} \textit{ such that } \nu_{a,a} = id \textit{ and } \nu_{b,c} \circ \nu_{a,b} = \nu_{a,c} \\ \textit{ for all } a \leq b \leq c. \end{array}$

You already know a few examples of persistence modules, e.g., the persistent homology of sublevel set filtrations or of Čech or Vietoris-Rips complexes (here one simply defines $V_a = 0$ for a < 0).

When are two persistence modules "the same"?

Definition 2. We say that two persistence modules \mathbb{U} and \mathbb{V} are isomorphic if there are isomorphisms $f_a: U_a \to V_a$ such that

$$\begin{array}{c} U_{a} \xrightarrow{u_{a,a'}} U_{a'} \\ \uparrow^{f_{a}} & \uparrow^{f_{a'}} \\ V_{a} \xrightarrow{\nu_{a,a'}} V_{a'} \end{array}$$

commutes both ways, i.e., $f_{a'} \circ u_{a,a'} = v_{a,a'} \circ f_a$, and $u_{a,a'} \circ f_a^{-1} = f_{a'}^{-1} \circ v_{a,a'}$.

Definition 3 (ε -interleaving persistence modules). Let \mathbb{U} and \mathbb{V} be persistence modules over \mathbb{R} . We say that \mathbb{U} and \mathbb{V} are ε -interleaved if there exist two families of maps, $\varphi_a : U_a \to V_{a+\varepsilon}$ and $\psi_a : V_a \to U_{a+\varepsilon}$ such that the following four diagrams are commutative:

Theorem 4. Assume \mathbb{U} and \mathbb{V} are ϵ -interleaving. Let $\delta > \epsilon$. Then \mathbb{U} and \mathbb{V} are also δ -interleaving.

Proof. Given $\varphi'_a : U_a \to V_{a+\epsilon}$ we define $\varphi_a : U_a \to V_{a+\delta}$ simply as $\varphi_a := \nu_{a+\epsilon,a+\delta} \circ \varphi'_a$. Symmetrically, we define $\psi_a := u_{a+\epsilon,a+\delta} \circ \psi'_a$. To check that the correct diagrams commute, we only check the right of every pair of symmetric ones above. We have to distinguish two cases for the first diagram, $a + \delta < a' + \epsilon$ and $a + \delta > a' + \epsilon$.

For the first case, we get the following diagram:

For the second case we get the diagram:

And finally, for the triangular diagram we get:

One can now verify that in all of these diagrams the correct paths commute.

Thus, the following definition makes sense:

Definition 5 (Interleaving distance). $d_{I}(\mathbb{U}, \mathbb{V}) := \inf\{\epsilon \mid \mathbb{U} \text{ and } \mathbb{V} \text{ are } \epsilon \text{-interleaved } \}.$

Definition 6 (Interleaving for Filtrations). Let \mathcal{F}, \mathcal{G} be filtrations over \mathbb{R} . \mathcal{F} and \mathcal{G} are ϵ -interleaved if there exist maps $\phi_a : F_a \to G_{a+\epsilon}$ and $\psi_a : G_a \to F_{a+\epsilon}$ such that the same type of diagrams commute up to homotopy, that is, for example $\phi_{a'} \circ \iota^F_{a,a'} \simeq \iota^G_{a+\epsilon,a'+\epsilon} \circ \phi_a$ are homotopic (contiguous).

We again define the interleaving distance (now between filtrations):

 $d_I(\mathcal{F},\mathcal{G}) = \inf\{ \varepsilon \mid \mathcal{F} \text{ and } \mathcal{G} \text{ are } \varepsilon \text{-interleaved } \}.$

Observation 7. For all $p \ge 0$, $d_I(H_p\mathcal{F}, H_p\mathcal{G}) \le d_I(\mathcal{F}, \mathcal{G})$.

The proof follows immediately from induced homology.

Recall that for a point cloud P and a radius r, we have the relationship between the Čech and Vietoris-Rips complexes as follows: $\mathbb{C}^r(P) \subseteq \mathbb{VR}^r(P) \subseteq \mathbb{C}^{2r}(P)$. Since this factor 2 is multiplicative, and we need an additive ϵ for interleaving, let us just take the logarithmic scale (base 2) for the radius, i.e., we define $\mathbb{C}^r_{log} = \mathbb{C}^{2^r}$ and similarly $\mathbb{VR}^r_{log} = \mathbb{VR}^{2^r}_{log}$. Since $2^{(r+1)} = 2r$, we have $\mathbb{C}^r_{log}(P) \subseteq \mathbb{VR}^r_{log}(P) \subseteq \mathbb{C}^{r+1}_{log}(P)$.

We thus have the following inclusions:

Since these are all inclusions, all relevant diagrams must commute, and thus we get that $d_I(\mathbb{C}_{log}, \mathbb{VR}_{log}) \leq 1$.

Definition 8. A persistence module \mathbb{V} is q-tame if the linear maps have finite rank.

Note that in this definition, the q is not a parameter, just a name.

Theorem 9. If \mathbb{U}, \mathbb{V} are q-tame persistence modules over \mathbb{R} , then

$$d_b(Dgm\mathbb{U}, Dgm\mathbb{V}) = d_I(\mathbb{U}, \mathbb{V}).$$

Thus, for every interleaving one can find between two persistence modules or between filtrations, one immediately gets a bound on the Bottleneck distance.

Let us consider an example where this theorem helps us a lot.

Interleaving of Čech Complexes

Consider two point clouds P, Q in the same metric space X.

Let us first consider the really simple case, where $P = \{p\}$, and $Q = \{q\}$ with d(p, q) = d. Then, $B(p, r) \subseteq B(q, r + d)$. Now, how does this generalize to larger point sets? To get the same kind of behaviour, we need that for every point in P, there exists some point in Q with distance at most d. This motivates the following distance measure:

Definition 10 (Hausdorff distance). Let $A, B \subseteq X$ be compact sets. Then the Hausdorff distance between A and B is defined as

$$d_{\mathsf{H}}(A, \mathsf{B}) := \max\{\max_{a \in A} d(a, \mathsf{B}), \max_{b \in \mathsf{B}} d(b, A)\}.$$

Let $d_H(P,Q) = d$. Then, $\bigcup_{p \in P} B(p,r) \subseteq \bigcup_{q \in Q} B(q,r+d)$. From this, we get the following lemma:

Lemma 11. The (filtration given by) the Čech complexes of P and Q are d-interleaved.

Proof.

The relevant diagrams commute up to homotopy, since we only chain together homotopies and inclusion maps. $\hfill \Box$

Theorem 12. $d_b(Dgm_p(\mathbb{C}(P)), Dgm_p(\mathbb{C}(Q))) \leq d_H(P,Q)$ for all $p \geq 0$.

Proof. By Theorem 9, Observation 7, and finally Lemma 11, we have

$$d_{b}(\ldots) = d_{I}(H_{p}\mathbb{C}(P), H_{p}\mathbb{C}(Q)) \leq d_{I}(\mathbb{C}(P), \mathbb{C}(Q)) \leq d_{H}(P, Q).$$