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Interleaving Distance

Until now, we compared persistence diagrams. We will now introduce the interleav-
ing distance, which instead compares persistence modules. Let us begin with a formal
definition of persistence modules.

Definition 1. A persistence module V over R 1s a collection V = {V, }.cr of vector spaces
V., together with linear maps vqq : Vq — Vo' such that vqq =1d and vpc 0 Vap = Vac
for all a <b <c.

You already know a few examples of persistence modules, e.g., the persistent homology
of sublevel set filtrations or of Cech or Vietoris-Rips complexes (here one simply defines
V, =0 for a < 0).

When are two persistence modules “the same”?

Definition 2. We say that two persistence modules U and V are isomorphic if there
are tsomorphisms f, : U, — V, such that
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U, —— Uy
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Va,a!
V, = Vu
commautes both ways, i.e., fooUqq =Vga ©fq, and ugq o fg‘ = fg,‘ O Vgq!-

Definition 3 (e-interleaving persistence modules). Let U and V be persistence modules
over R. We say that U and V are e-interleaved if there exist two famailies of maps,
©q : Uy = Ve and Py @ Vo — Ugie such that the following four diagrams are
commutative:
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Theorem 4. Assume U and V are e-interleaving. Let 8 > €. Then U and V are also
d-interleaving.

Proof. Given ¢ : Uy — Vg we define @, : Uy — Vg5 simply as @q = Vaieats ©
@/. Symmetrically, we define Py := Uqiears © W,. To check that the correct diagrams
commute, we only check the right of every pair of symmetric ones above. We have to
distinguish two cases for the first diagram, a+d < a’'+ e and a+6 > a’' + €.

For the first case, we get the following diagram:

Uy — Uer
Vare — Vais Varre — Varis
For the second case we get the diagram:
Vate Varre % Vars ——3 Vs

And finally, for the triangular diagram we get:

Ugp2e — ua+6+e ——= Uags

\//

a+e ’ Va+6

One can now verify that in all of these diagrams the correct paths commute. ]
Thus, the following definition makes sense:

Definition 5 (Interleaving distance). d;(U,V) :=inf{e | U and V are e-interleaved }.



Definition 6 (Interleaving for Filtrations). Let F,G be filtrations over R. F and G
are e-interleaved if there exist maps ¢, : Fo — Goe and V. : Go — Foie Such
that the same type of diagrams commute up to homotopy, that s, for example
o O Ly ot X LS ¢ a1 © @a are homotopic (contiguous).

We again define the interleaving distance (now between filtrations):

di(F,G) =inf{e | F and G are e-interleaved }.
Observation 7. For all p > 0, di(H,F,H,G) < di(F,G).

The proof follows immediately from induced homology.

Recall that for a point cloud P and a radius r, we have the relationship between the Cech
and Vietoris-Rips complexes as follows: C"(P) C VR'(P) C C¥(P). Since this factor 2 is
multiplicative, and we need an additive € for interleaving, let us just take the logarithmic

scale (base 2) for the radius, i.e., we define C],, = C* and similarly VR},, = VRfog Since

20t = 2r, we have CJ,,(P) C VRbg( ) C C (P).
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We thus have the following inclusions:
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Since these are all inclusions, all relevant diagrams must commute, and thus we get that
dl(clog) VRIog) S 1

Definition 8. A persistence module V 1s g-tame if the linear maps have finite rank.
Note that in this definition, the q is not a parameter, just a name.

Theorem 9. If U,V are g-tame persistence modules over R, then
dy(DgmU, DgmV) = d;(U, V).

Thus, for every interleaving one can find between two persistence modules or between
filtrations, one immediately gets a bound on the Bottleneck distance.

Let us consider an example where this theorem helps us a lot.



Interleaving of Cech Complexes

Consider two point clouds P, Q in the same metric space X.

Let us first consider the really simple case, where P = {p}, and Q = {q} with d(p, q) = d.
Then, B(p,r) C B(q,r + d). Now, how does this generalize to larger point sets? To get
the same kind of behaviour, we need that for every point in P, there exists some point
in Q with distance at most d. This motivates the following distance measure:

Definition 10 (Hausdorff distance). Let A,B C X be compact sets. Then the Hausdorff
distance between A and B 1s defined as

dy(A,B) := max{r(rllgzc d(a, B), max d(b,A)}.

Let dy(P,Q) = d. Then, U,ep B(p, 1) € Ugeq B(q,7+d). From this, we get the following
lemma:

Lemma 11. The (filtration given by) the Cech complezes of P and Q are d-interleaved.

Proof.
Cr(P) N (Cr-s—d(P) (Cr—i-Zd(P)
UpePB(p) UpEPB(p>T+ d UpePB(p)T+2d)
UqEQB(q ) quQB(q>r+d UqEQB(q»r+2d)

| ] |

Q) ————— C*(Q) ————— C(Q)

The relevant diagrams commute up to homotopy, since we only chain together homo-
topies and inclusion maps. ]

Theorem 12. d,(Dgm,(C(P)), Dgm,(C(Q))) < du(P,Q) for all p > 0.

Proof. By Theorem [0, Observation [7}, and finally Lemma [11}, we have

dy(...) = di(H,C(P), H,C(Q)) < di(C(P),C(Q)) < dn(P, Q).



