

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Patrick Schnider

Introduction to Topological Data Analysis Scribe Notes 18 FS23

Scribe notes by Simon Weber. Please contact me for corrections. Lecture date: May 4, 2023 Last update: Thursday 4th May, 2023, 17:18

Interval Persistence Modules

We consider persistence modules over \mathbb{R} of vector spaces over some field \mathbb{F} .

In today's lecture we look at some special persistence modules, called interval modules.

Definition 1. A interval module $\mathbb{I}[b,d]$ is an persistence module

$$V_{\mathfrak{a}} = egin{cases} \mathbb{F} & \textit{if } \mathfrak{a} \in [\mathfrak{b}, \mathfrak{d}], \ \mathfrak{0} & \textit{otherwise}. \end{cases}$$
 and $v_{\mathfrak{a},\mathfrak{a}'} = egin{cases} \operatorname{id} & \mathfrak{b} \leq \mathfrak{a} \leq \mathfrak{a}' \leq \mathfrak{d}, \ \mathfrak{0} & \textit{otherwise}. \end{cases}$

Similarly, we can define interval modules on open and clopen intervals, denoted by $\mathbb{I}(b, d)$, $\mathbb{I}(b, d]$, and $\mathbb{I}[b, d)$. We write $\mathbb{I}(b, d)$ to include all four of these types.

For an interval module we can easily talk about birth and death as we did in persistent homology. If we have a persistent homology module that is (isomorphic to) an interval module, the birth and death correspond to the boundaries b, d of the interval.

Definition 2. A persistence module \mathbb{U} is called pointwise finite dimensional (p.f.d.) if for all $a \in \mathbb{R}$, U_a has finite dimension.

Note that all p.f.d. persistence modules are also q-tame.

Definition 3. Given two persistence modules \mathbb{U}, \mathbb{V} , we define their direct sum $\mathbb{U} \oplus \mathbb{V}$ by $(\mathbb{U} \oplus \mathbb{V})_a = \mathbb{U}_a \oplus \mathbb{V}_a$ and $(\mathfrak{u} \oplus \mathfrak{v})_{a,a'} = \mathfrak{u}_{a,a'} \oplus \mathfrak{v}_{a,a'}$.

Here, the direct sum of maps just means applying the respective maps component-wise.

Proposition 4. If $\mathbb{U}_1, \mathbb{U}_2$ are ϵ -interleaved, and $\mathbb{V}_1, \mathbb{V}_2$ are δ -interleaved, then $\mathbb{U}_1 \oplus \mathbb{V}_1$ and $\mathbb{U}_2 \oplus \mathbb{V}_2$ are max $\{\epsilon, \delta\}$ -interleaved.

Proof. W.l.o.g. $\epsilon \geq \delta$, so we need to show that they are ϵ -interleaved. Recall that if two persistence modules are δ -interleaved, they are also ϵ -interleaved. Let φ^{u}, ψ^{u} be (series of) functions showing that $\mathbb{U}_{1}, \mathbb{U}_{2}$ are ϵ -interleaved. Similarly, let φ^{v}, ψ^{v} be (series of) functions showing that $\mathbb{V}_{1}, \mathbb{V}_{2}$ are ϵ -interleaved. Then, $\varphi^{u} \oplus \varphi^{v}, \psi^{u} \oplus \psi^{v}$ show that $\mathbb{U}_{1} \oplus \mathbb{V}_{1}$ and $\mathbb{U}_{2} \oplus \mathbb{V}_{2}$ are ϵ -interleaved. \Box

If we now have a direct sum of interval modules, we can still nicely talk about birth and death: We just look at each interval module in isolation. The following theorem shows that surprisingly most persistence modules can be expressed as direct sums of interval modules.

Theorem 5 (Structure theorem). Any p.f.d. persistence module decomposes uniquely into interval modules, i.e., we have

$$\mathbb{U} \cong \bigoplus_{i \in I} \mathbb{I} \langle b_i, d_i \rangle.$$

The intervals $\langle b_i, d_i \rangle$ are exactly the barcodes if \mathbb{U} is a persistent homology module.

Note that unless we have some additional tame-ness condition on \mathbb{U} , I is not guaranteed to be finite.

Recall that when we talked about persistent homology, we said that there is some consistent global choice of basis for persistent homology groups. That was a consequence of the structure theorem.

Proposition 6. Consider two interval modules $\mathbb{I}_1 = \mathbb{I}\langle b_1, d_1 \rangle$ and $\mathbb{I}_2 = \mathbb{I}\langle b_2, d_2 \rangle$. Then, $d_I(\mathbb{I}_1, \mathbb{I}_2) = d_b(Dgm\mathbb{I}_1, Dgm\mathbb{I}_2)$.

Proof. (This proof has not been shown in the lecture and is not relevant for the exam.) To prove that $d_{I}(\mathbb{I}_{1},\mathbb{I}_{2}) \geq d_{b}(Dgm\mathbb{I}_{1},Dgm\mathbb{I}_{2})$, we show that every upper bound on d_{I} is also an upper bound on d_{b} : assume that we have maps φ, ψ showing that the two modules are ϵ -interleaved. Then, consider $\psi_{a+\epsilon} \circ \varphi_{a} = \nu_{a,a+2\epsilon}^{1}$, equality holding because φ, ψ certify ϵ -interleaving. Consider $a \in \langle b_{1}, d_{1} \rangle$.

Case 1: $\nu_{a,a+2\varepsilon}^1 = 0$ for all $a \in \langle b_1, d_1 \rangle$. Then, $d_1 - b_1 < 2\varepsilon$, and the (infinity-norm) distance of (b_1, d_1) to the diagonal is less than ε .

Case 2: $\nu_{a,a+2\epsilon}^1 = \text{id for some } a \in \langle b_1, d_1 \rangle$. Then, $d_1 - b_1 \ge 2\epsilon$. Furthermore, we have $\varphi_a(\mathbb{F}) = \mathbb{F}$ for all $a \in \langle b_1, d_1 - 2\epsilon \rangle$. So, for these a, we must also have $a + \epsilon \in \langle b_2, d_2 \rangle$. This tells us that $\langle b_2, d_2 \rangle$ must "cover" a large part of $\langle b_1, d_1 \rangle$, namely we get $b_2 \le b_1 + \epsilon$, and $d_2 \ge d_1 - \epsilon$. We can now see that $|b_2 - b_1| \le \epsilon$ and $|d_2 - d_1| \le \epsilon$: to violate this, $\langle b_2, d_2 \rangle$ would have to be a larger interval than $\langle b_1, d_1 \rangle$ (in particular, it would be longer than 2ϵ), and we could thus exchange their roles and get that $b_1 \le b_2 + \epsilon$ and $d_1 \ge d_2 - \epsilon$. From this, we get that $d_{\infty}((b_1, d_1), (b_2, d_2)) \le \epsilon$, and thus get the bound on d_b .

We now prove the other direction, $d_I(\mathbb{I}_1, \mathbb{I}_2) \leq d_b(Dgm\mathbb{I}_1, Dgm\mathbb{I}_2)$. To see this, we show that from every matching whose longest edge is ϵ , we get an ϵ -interleaving.

Case 1: The two off-diagonal points are matched to the diagonal. Then, we get that $d_i - b_i \leq 2\varepsilon$ for both of them, and thus for all $\varepsilon' > \varepsilon$, \mathbb{I}_1 and \mathbb{I}_2 are ε' -interleaved with $\phi, \psi = 0$. Thus, $d_I \leq \varepsilon$.

Corollary 7. Let \mathbb{U}, \mathbb{V} be p.f.d. persistence modules. Then, $d_{I}(\mathbb{U}, \mathbb{V}) \leq d_{b}(Dgm\mathbb{U}, Dgm\mathbb{V})$.

Proof. We apply the structure theorem to write $\mathbb{U} = \bigoplus_{i \in I} \mathbb{I}\langle b_i, d_i \rangle \oplus \bigoplus_{j \in J} 0$ and $\mathbb{V} = \bigoplus_{j \in J} \mathbb{I}\langle b_j, d_j \rangle \oplus \bigoplus_{i \in I} 0$. From the Bottleneck matching we get a matching between parts making up \mathbb{U} and \mathbb{V} . Since the Bottleneck distance is the maximum length of any edge, we have $d_b(Dgm\mathbb{U}, Dgm\mathbb{V}) \ge d_b(Dgm\mathbb{I}_1, Dgm\mathbb{I}_2) = d_I(\mathbb{I}_1, \mathbb{I}_2)$ for every two interval modules that were matched together, where we used Theorem 6. Finally, we use Theorem 4 to get the desired statement.