Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Institute of Theoretical Computer Science
Patrick Schnider

Introduction to Topological Data Analysis
Scribe Notes 18
FS23

Scribe notes by Simon Weber. Please contact me for corrections.
Lecture date: May 4, 2023
Last update: Thursday $4^{\text {th }}$ May, 2023, 17:18

Interval Persistence Modules

We consider persistence modules over \mathbb{R} of vector spaces over some field \mathbb{F}.
In today's lecture we look at some special persistence modules, called interval modules.

Definition 1. A interval module $\mathbb{I}[\mathrm{b}, \mathrm{d}]$ is an persistence module

$$
\mathrm{V}_{\mathrm{a}}=\left\{\begin{array}{ll}
\mathbb{F} & \text { if } \mathrm{a} \in[\mathrm{~b}, \mathrm{~d}], \\
0 & \text { otherwise. }
\end{array} \quad \text { and } \quad v_{\mathrm{a}, \mathrm{a}^{\prime}}= \begin{cases}\text { id } & \mathrm{b} \leq \mathrm{a} \leq \mathrm{a}^{\prime} \leq \mathrm{d} \\
0 & \text { otherwise } .\end{cases}\right.
$$

Similarly, we can define interval modules on open and clopen intervals, denoted by $\mathbb{I}(b, d), \mathbb{I}(b, d]$, and $\mathbb{I}[b, d)$. We write $\mathbb{I}\langle b, d\rangle$ to include all four of these types.

For an interval module we can easily talk about birth and death as we did in persistent homology. If we have a persistent homology module that is (isomorphic to) an interval module, the birth and death correspond to the boundaries b, d of the interval.

Definition 2. A persistence module \mathbb{U} is called pointwise finite dimensional (p.f.d.) if for all $\mathrm{a} \in \mathbb{R}, \mathrm{U}_{\mathrm{a}}$ has finite dimension.

Note that all p.f.d. persistence modules are also q-tame.

Definition 3. Given two persistence modules \mathbb{U}, \mathbb{V}, we define their direct sum $\mathbb{U} \oplus \mathbb{V}$ by $(\mathrm{U} \oplus \mathrm{V})_{\mathrm{a}}=\mathrm{U}_{\mathrm{a}} \oplus \mathrm{V}_{\mathrm{a}}$ and $(u \oplus v)_{\mathrm{a}, \mathrm{a}^{\prime}}=\mathrm{u}_{\mathrm{a}, \mathrm{a}^{\prime}} \oplus v_{\mathrm{a}, \mathrm{a}^{\prime}}$.

Here, the direct sum of maps just means applying the respective maps component-wise.

Proposition 4. If $\mathbb{U}_{1}, \mathbb{U}_{2}$ are ϵ-interleaved, and $\mathbb{V}_{1}, \mathbb{V}_{2}$ are δ-interleaved, then $\mathbb{U}_{1} \oplus \mathbb{V}_{1}$ and $\mathbb{U}_{2} \oplus \mathbb{V}_{2}$ are $\max \{\epsilon, \delta\}$-interleaved.

Proof. W.l.o.g. $\epsilon \geq \delta$, so we need to show that they are ϵ-interleaved. Recall that if two persistence modules are δ-interleaved, they are also ϵ-interleaved. Let φ^{u}, ψ^{u} be (series of) functions showing that $\mathbb{U}_{1}, \mathbb{U}_{2}$ are ϵ-interleaved. Similarly, let φ^{v}, ψ^{v} be (series of) functions showing that $\mathbb{V}_{1}, \mathbb{V}_{2}$ are ϵ-interleaved. Then, $\varphi^{u} \oplus \varphi^{v}, \psi^{u} \oplus \psi^{v}$ show that $\mathbb{U}_{1} \oplus \mathbb{V}_{1}$ and $\mathbb{U}_{2} \oplus \mathbb{V}_{2}$ are ϵ-interleaved.

If we now have a direct sum of interval modules, we can still nicely talk about birth and death: We just look at each interval module in isolation. The following theorem shows that surprisingly most persistence modules can be expressed as direct sums of interval modules.

Theorem 5 (Structure theorem). Any p.f.d. persistence module decomposes uniquely into interval modules, i.e., we have

$$
\mathbb{U} \cong \bigoplus_{i \in \mathrm{I}} \mathbb{I}\left\langle\mathrm{~b}_{i}, \mathrm{~d}_{\mathfrak{i}}\right\rangle
$$

The intervals $\left\langle\mathrm{b}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right\rangle$ are exactly the barcodes if \mathbb{U} is a persistent homology module.
Note that unless we have some additional tame-ness condition on \mathbb{U}, I is not guaranteed to be finite.

Recall that when we talked about persistent homology, we said that there is some consistent global choice of basis for persistent homology groups. That was a consequence of the structure theorem.

Proposition 6. Consider two interval modules $\mathbb{I}_{1}=\mathbb{I}\left\langle\mathrm{b}_{1}, \mathrm{~d}_{1}\right\rangle$ and $\mathbb{I}_{2}=\mathbb{I}\left\langle\mathrm{b}_{2}, \mathrm{~d}_{2}\right\rangle$. Then, $\mathrm{d}_{\mathrm{I}}\left(\mathbb{I}_{1}, \mathbb{I}_{2}\right)=\mathrm{d}_{\mathrm{b}}\left(\mathrm{DgmI}_{1}, \mathrm{DgmI}_{2}\right)$.

Proof. (This proof has not been shown in the lecture and is not relevant for the exam.) To prove that $d_{I}\left(\mathbb{I}_{1}, \mathbb{I}_{2}\right) \geq d_{b}\left(D g m \mathbb{I}_{1}, D g m \mathbb{I}_{2}\right)$, we show that every upper bound on d_{I} is also an upper bound on d_{b} : assume that we have maps φ, ψ showing that the two modules are ϵ-interleaved. Then, consider $\psi_{a+\varepsilon} \circ \varphi_{a}=v_{a, a+2 \epsilon}^{1}$, equality holding because φ, ψ certify ϵ-interleaving. Consider $a \in\left\langle b_{1}, d_{1}\right\rangle$.

Case 1: $\quad v_{\mathrm{a}, \mathrm{a}+2 \epsilon}^{1}=0$ for all $\mathrm{a} \in\left\langle\mathrm{b}_{1}, \mathrm{~d}_{1}\right\rangle$. Then, $\mathrm{d}_{1}-\mathrm{b}_{1}<2 \epsilon$, and the (infinity-norm) distance of $\left(b_{1}, d_{1}\right)$ to the diagonal is less than ϵ.

Case 2: $\quad v_{a, a+2 \epsilon}^{1}=i d$ for some $a \in\left\langle b_{1}, d_{1}\right\rangle$. Then, $d_{1}-b_{1} \geq 2 \epsilon$. Furthermore, we have $\varphi_{a}(\mathbb{F})=\mathbb{F}$ for all $a \in\left\langle b_{1}, d_{1}-2 \epsilon\right\rangle$. So, for these a, we must also have $a+\epsilon \in\left\langle b_{2}, d_{2}\right\rangle$. This tells us that $\left\langle b_{2}, d_{2}\right\rangle$ must "cover" a large part of $\left\langle b_{1}, d_{1}\right\rangle$, namely we get $b_{2} \leq b_{1}+\epsilon$, and $d_{2} \geq d_{1}-\epsilon$. We can now see that $\left|b_{2}-b_{1}\right| \leq \epsilon$ and $\left|d_{2}-d_{1}\right| \leq \epsilon$: to violate this, $\left\langle\mathrm{b}_{2}, \mathrm{~d}_{2}\right\rangle$ would have to be a larger interval than $\left\langle\mathrm{b}_{1}, \mathrm{~d}_{1}\right\rangle$ (in particular, it would be longer than 2ϵ), and we could thus exchange their roles and get that $b_{1} \leq b_{2}+\epsilon$ and $d_{1} \geq d_{2}-\epsilon$. From this, we get that $d_{\infty}\left(\left(b_{1}, d_{1}\right),\left(b_{2}, d_{2}\right)\right) \leq \epsilon$, and thus get the bound on d_{b}.

We now prove the other direction, $d_{I}\left(\mathbb{I}_{1}, \mathbb{I}_{2}\right) \leq d_{b}\left(\mathrm{Dgm}_{1}, D g m \mathbb{I}_{2}\right)$. To see this, we show that from every matching whose longest edge is ϵ, we get an ϵ-interleaving.

Case 1: The two off-diagonal points are matched to the diagonal. Then, we get that $d_{i}-b_{i} \leq 2 \epsilon$ for both of them, and thus for all $\epsilon^{\prime}>\epsilon, \mathbb{I}_{1}$ and \mathbb{I}_{2} are ϵ^{\prime}-interleaved with $\varphi, \psi=0$. Thus, $d_{\mathrm{I}} \leq \epsilon$.

Case 2: The points are matched with each other. Then, $\left|b_{2}-b_{1}\right| \leq \epsilon$ and $\left|d_{2}-d_{1}\right| \leq \epsilon$. Taking $\varphi, \psi=$ id we can see that \mathbb{I}_{1} and \mathbb{I}_{2} are ϵ-interleaved. Thus, $d_{\mathrm{I}} \leq \epsilon$.

Corollary 7. Let \mathbb{U}, \mathbb{V} be p.f.d. persistence modules. Then, $\mathrm{d}_{\mathrm{I}}(\mathbb{U}, \mathbb{V}) \leq \mathrm{d}_{\mathrm{b}}(\mathrm{Dgm} \mathbb{U}, \operatorname{Dgm} \mathbb{V})$.
Proof. We apply the structure theorem to write $\mathbb{U}=\oplus_{i \in \mathrm{I}} \mathbb{I}\left\langle\mathrm{b}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right\rangle \oplus \oplus_{\mathrm{j} \in \mathrm{J}} 0$ and $\mathbb{V}=$ $\oplus_{j \in J} \mathbb{I}\left\langle\mathrm{~b}_{\mathrm{j}}, \mathrm{d}_{\mathrm{j}}\right\rangle \oplus \oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{O}$. From the Bottleneck matching we get a matching between parts making up \mathbb{U} and \mathbb{V}. Since the Bottleneck distance is the maximum length of any edge, we have $d_{b}(D g m \mathbb{U}, \operatorname{Dgm} \mathbb{V}) \geq d_{b}\left(\mathrm{DgmI}_{1}, D g m \mathbb{I}_{2}\right)=d_{I}\left(\mathbb{I}_{1}, \mathbb{I}_{2}\right)$ for every two interval modules that were matched together, where we used Theorem 6. Finally, we use Theorem 4 to get the desired statement.

