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Reeb Graphs

The idea of Reeb graphs is that given some topological space X, and some function
f : X→ R, we consider the preimage of f for some �xed value a 2 R. We place one point
per connected component of the preimage. We do this for some values in R, and connect
the points corresponding to neighboring connected components in adjacent preimages.
More formally,

Definition 1. Let X be some topological space, and f a function f : X→ R. Two points
x, y are called equivalent (x ∼ y), i� f(x) = f(y) = α and x and y are in the same
connected component of f−1(α). The Reeb graph Rf is the quotient space X/ ∼.

To make sure that nothing weird happens due to some things being in�nite, we assume
all of our functions to be levelset tame:

Definition 2. A function f : X→ R is levelset tame if

• each levelset f−1(α) has �nitely many connected components, all of which are
path-connected, and

• the homology groups of the levelsets only change at �nitely many critical val-
ues.

The Reeb graph itself is just a (continuous) topological space. We call it a graph, since
it is 1-dimensional. To arrive at a graph as we know it in combinatorics, we will need
to discretize it. To discretize the Reeb graph, we need to de�ne vertices and edges.
There are many di�erent possibilities of de�ning vertices and edges to discretize the
Reeb graph, but we wish to de�ne some type of minimal one.

Let us look at the neighborhood of some point p in the Reeb graph (as a topological
space). We look at how many ways there exist to go from p towards the direction of
higher f-value (we call this number the up-degree u), and how many ways to go towards
the direction of lower f-value (we call this the down-degree l). Depending on u and l,
we classify p as in Table 1.
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Table 1: Classi�cations of points in the Reeb graph.

u l Classi�cation
1 1 regular
0 > 0 maximum
> 0 0 minimum
� 2 l up-fork
u � 2 down-fork

Note that a point can fall into multiple of these classes, for example it can be a maximum
and a down-fork simultaneously, or an up-fork and a down-fork simultaneously. We call
the minima, maxima, up-forks, and down-forks critical points. Our discretization places
vertices at the critical points.

Note that the graph we get through this process is not necessarily simple, we may have
multi-edges.

We next consider merge trees and split trees, which are variants of the Reeb graph,
where instead of levelsets, we look at sub-level sets or super-level sets.

Definition 3. Let X be some topological space, and f a function f : X → R. We have
x ∼M y for two points x, y, i� f(x) = f(y) = α and x and y are in the same connected
component of f−1((−∞, α]). The merge tree TM is the quotient space X/ ∼M.

Note that in the merge tree, since we only increase the space under consideration, we
never have a connected component that splits. We can only have new connected compo-
nents appearing, and connected components merging. This also tells us that the Merge
tree (or its discretization) is always a tree.

Definition 4. Let X be some topological space, and f a function f : X → R. We have
x ∼S y for two points x, y, i� f(x) = f(y) = α and x and y are in the same connected
component of f−1([α,∞)). The split tree TS is the quotient space X/ ∼S.

In computers, we do not like working with arbitrary topological spaces. We thus now
look more at Reeb graphs in the context of simplicial complexes. We consider a simplicial
complex K and a function f : K→ R, which is piecewise linear (linear on each simplex).
We observe that the Reeb graph then only depends on the 2-skeleton of K. This is the
case since looking at a levelset is the same as cutting through the simplicial complex.
When we cut through a simplex, we generally get a simplex of one dimension lower. In
a simplicial complex, connectivity is completely determined by the 1-skeleton. Thus,
before cutting, the 2-skeleton su�ces. Furthermore, we can see that the critical points
are images of the vertices of K. This happens since a connected component can only
appear, disappear, split, or merge at some local maximum or minimum of the connected
component. Since the function is linear, the maximum or minimum of every simplex is
also attained at some vertex.
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We de�ne the augmented Reeb graph of a simplicial complex with a PL-function, by
just taking all the images of the vertices as our graph vertices.

How can we compute this augmented Reeb graph? We can do a discrete sweep (or scan)
through the simplicial complex in the order given by f, only stopping at values a such
that f(v) = a for some vertex v. In this sweep, we want to keep track of the connected
components. The levelset f−1(α) of the 2-skeleton of K is just a graph Gα: vertices and
edges of K induce vertices of Gα, triangles induce edges. We can now go through our
vertices in order, look at these graphs, and update the connected components.

The runtime of this algorithm is given by the data structure used to manage the con-
nected components. We want a data structure that can update the connected compo-
nents under insertion and deletions of edges and vertices. There are such data structures
that can do each update in amortized time O(logm), where m is the size of the graph.
The size of the graph is bounded by the sum m of vertices, edges, and triangles in K.
Each such feature appears at one point, and disappears at one point, and we thus have
at most 2m insertions and deletions in total, giving an O(m logm) algorithm.

Homology of Reeb graphs

Since the Reeb graph Rf is a graph (a 1-dimensional object), we have Hp(Rf) = 0 for
p � 2.

Observation 5. For a levelset tame f : X→ R, we have β0(X) = β0(Rf).

In other words, the Reeb graph captures the 0-homology of the input space X perfectly,
no matter which levelset tame function f we use.

Sadly, the same does not hold for the 1-homology. Let us consider a torus, as in Figure 1.
In general, it can be that the choice of function f determines whether we capture a hole
or not, consider e.g. a cylinder. Note that for the torus, it is actually the case that no
matter which function f we choose, we cannot capture its 1-homology (this is non-trivial
to show).

f

Figure 1: The torus and its Reeb graph.
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On the other hand, we can see that every cycle in the Reeb graph is indeed also a cycle
in the topological space X, and it cannot be �lled in, so it is indeed a hole. Thus we also
get the following observation:

Observation 6. For a levelset tame f : X→ R, we have β1(X) � β1(Rf).

Can we somehow formalize which holes we lose? To do this, we split up homology into
\horizontal" and a \vertical" parts, where horizontal and vertical are of course relative
to f.

Definition 7. A p-th homology class h 2 Hp(X) is called horizontal if there is a �nite set
of values A = {a1, . . . , ak} such that h has a pre-image under the map Hp(

S
a2A Xa) →

Hp(X) induced by inclusion, where Xa = f
−1(a).

This de�nition means that we need to be able to �nd a �nite set of levelsets, such that
we can �nd cycles contained in these levelsets, which are in the homology class h in
Hp(X).

One now wonders whether the set of horizontal homology classes forms a group. Let
this set be Hp(X). It turns out that it is indeed a group.

Lemma 8. Hp(X) is a subgroup of Hp(X).

Proof. First, we see that the identity element 0 is in Hp(X). We can take an arbitrary
set A, and we can always map the 0 element of Hp(

S
a2A Xa) to 0.

Next, we show that the set is closed under addition. Let p, q 2 Hp(X), and we show that
p + q 2 Hp(X). p has a pre-image in some levelset Ap, and q has a pre-image in some
levelset Aq. p+ q must have a pre-image in Ap [Aq.

Finally, we show that the inverse of every element is contained in the group, but since
every element is self-inverse in Z2-homology, we get that for every element its inverse is
also contained in Hp(X).

Since the horizontal homology is a sub-group, we can now easily de�ne vertical homology
by taking quotient groups.

Definition 9. The vertical homology group of X with respect to f is the group
v

Hp(X) :=
Hp(X)/Hp(X).

Observation 10. rank(Hp(X)) = rank(Hp(X)) + rank(
v

Hp(X)).

Fact 11. The surjection φ : X→ Rf induces an isomorphism
v

Φ :
v

H1(X) → H1(Rf).
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In other words, when we go from a space X to its Reeb graph, we keep the vertical
homology classes, and lose the horizontal ones.

Corollary 12. Given X an orientable connected compact 2-manifold, and a Morse
function f : X→ R, then β1(Rf) = β1(X)/2.

Here, a 2-manifold is a space that locally at every point looks like R2. Orientable means
that there is an inside and an outside side. A Morse function is a \nice enough" function
de�ned in terms of some derivatives, which we do not need to specify here.
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