Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Institute of Theoretical Computer Science
Patrick Schnider

Scribe notes by Simon Weber. Please contact me for corrections.
Lecture date: May 12, 2023
Last update: Friday $19^{\text {th }}$ May, 2023, 07:40
Definition 1. Let R_{f} be a Reeb graph of a space X, and $u, v \in R_{f}$ (in the same connected component), and let π be a path from u to v. We define the height of π as height $(\pi)=\max _{x \in \pi} f(x)-\min _{x \in \pi} f(x)$. To turn this into a distance metric, we consider $\Pi(u, v)$, the set of all paths between u and v. Then, the function induced metric on R_{f} is defined as

$$
\mathrm{d}_{\mathrm{f}}(u, v)=\min _{\pi \in \Pi(u, v)} \operatorname{height}(\pi) .
$$

In a sense, $\mathrm{d}_{\mathrm{f}}(u, v)$ is the "thickness" of the thinnest "slice" of the space X in which u and v are connected.

Definition 2 (Functional distortion distance). Let R_{f} and R_{g} be two Reeb graphs. Let $\Phi: R_{f} \rightarrow R_{g}, \Psi: R_{g} \rightarrow R_{f}$ be continuous functions, but not necessarily functionpreserving. Then, we define correspondence and distortion:

$$
\begin{gathered}
C(\Phi, \Psi)=\left\{(x, y) \in R_{f} \times R_{g} \mid \Phi(x)=y \text { or } x=\Psi(y)\right\} \\
D(\Phi, \Psi)=\sup _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in C(\Phi, \Psi)} \frac{1}{2}\left|d_{f}\left(x, x^{\prime}\right)-d_{g}\left(y, y^{\prime}\right)\right| .
\end{gathered}
$$

And finally, we define the functional distortion distance,

$$
d_{F D}\left(R_{f}, R_{g}\right)=\inf _{\Phi, \Psi} \max \left\{D(\Phi, \Psi),\|f-(g \circ \Phi)\|_{\infty},\|g-(f \circ \Psi)\|_{\infty}\right\} .
$$

Theorem 3. Let $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathbb{R}$ be tame functions. Then, $\mathrm{d}_{\mathrm{FD}}\left(\mathrm{R}_{\mathrm{f}}, \mathrm{R}_{\mathrm{g}}\right) \leq\|\mathrm{f}-\mathrm{g}\|_{\infty}$.
Theorem 4. $d_{I}\left(R_{f}, R_{g}\right) \leq d_{F D}\left(R_{f}, R_{g}\right) \leq 3 d_{I}\left(R_{f}, R_{g}\right)$.

Mapper

An approximation of the Reeb graph

Reeb graphs "throw away" a lot of information, since they at most retain some 1dimensional holes, but no larger holes. To generalize Reeb graphs further, we start looking at neighborhoods instead of levelsets, which will then lead to the Mapper algorithm.

To begin, we consider the 1-dimensional case, and try to find an approximation of the Reeb graph. Instead of looking at pre-images of points, we will now look at pre-images of intervals. Let $\mathcal{U}=\left\{\mathrm{U}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be an open cover of \mathbb{R} (i.e., a collection of open sets whose union is \mathbb{R}). As always, we consider a function $f: X \rightarrow \mathbb{R}$. For each $f^{-1}\left(U_{\alpha}\right)$, we consider a partition into path-connected components, i.e., $f^{-1}\left(U_{\alpha}\right)=\bigcup_{\beta \in B_{\alpha}} V_{\beta}$. We then look at $f^{*}(\mathcal{U}):=\left\{V_{\beta}\right\}$, the set of all V_{β} we get over all α. Our object of interest is the nerve of this family, i.e., $\mathrm{N}\left(\mathrm{f}^{*}(\mathcal{U})\right)$.

Figure 1: A space X, an open cover \mathcal{U} of \mathbb{R}, the family $f^{*}(\mathcal{F})$, and its nerve.
If we take sufficiently nice functions, and sufficiently fine covers, then $N\left(f^{*}(\mathcal{U})\right)$ is isomorphic to R_{f}.

Topological Mapper

Definition 5. Let X, Z be topological spaces. Then we call $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ well-behaved if for all open sets $\mathrm{U} \subseteq \mathrm{Z}, \mathrm{f}^{-1}(\mathrm{U})$ has finitely many path-connected components.

Definition 6 (Mapper). Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ be well-behaved, and \mathcal{U} be a (finite) open cover of Z. Then the Mapper is defined as $M(\mathcal{U}, f):=N\left(f^{*}(\mathcal{U})\right)$.

Example: As an example, we look at X being the boundary of the 3 -cube $[0,1]^{3}$. We then also look at $Z_{1}=\mathbb{R}^{2}$ spanned by the x - and y-axis, with $f_{1}: X \rightarrow Z_{1}$ being the projection onto this plane. Furthermore, we look at $Z_{2}=\mathbb{R}$, spanned by just the x-axis, and $f_{2}: X \rightarrow Z_{2}$ being again the projection.
We consider the open cover \mathcal{U}_{2} of $Z_{2}:\left\{\left(-\infty, \frac{1}{3}\right),(0,1),\left(\frac{2}{3},+\infty\right)\right\}$. For Z_{1}, we consider the cover $\mathcal{U}_{1}:=\mathcal{U}_{2} \times \mathcal{U}_{2}$.

Figure 2: The cover \mathcal{U}_{∞}, and the two Mappers. The Mapper $M\left(\mathcal{U}_{1}, f_{1}\right)$ consists of an empty octahedron, with additional filled tetrahedra attached at the purple vertices. The whole space thus collapses to an octahedron.

Mapper for Point Clouds

Input: In the most general setting, data comes as a finite metric space (P, d_{P}), for example as points in \mathbb{R}^{d} or as vertices of a graph. We also requires a cover \mathcal{U} of a space Z, usually $Z=\mathbb{R}$, as input. Finally, we also need a filter function $f: P \rightarrow Z$.

Algorithm: Since at the moment we only have a discrete metric space, we do not really have the notion of connected components yet. For every $U \in \mathcal{U}$, we thus cluster the preimage $\mathrm{f}^{-1}(\mathcal{U})$ using some clustering algorithm, which we can also consider as an input. Now, we can just consider each cluster C_{i} as a vertex of some simplicial complex K, and add a face $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}$ to K if these clusters (which are just point sets) have a common point.

Output: We output K, or even just its 1 -skeleton.

