

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Patrick Schnider

Introduction to Topological Data Analysis Scribe Notes 23 FS23

Scribe notes by Simon Weber. Please contact me for corrections. Lecture date: May 25, 2023 Last update: Thursday 25th May, 2023, 14:02

Multiscale Mapper

The multiscale Mapper is a combination of the ideas of persistence and of Mapper. We here want to look at different covers.

Definition 1. Let $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ and $\mathcal{F} = \{V_{\beta}\}_{\beta \in B}$ be two covers of the same space X. A map of covers is a map $\varphi : A \to B$ such that for every $\alpha \in A$, we have $U_{\alpha} \subseteq V_{\varphi(\alpha)}$.

Proposition 2. If $\phi : \mathcal{U} \to \mathcal{V}$ is a map of covers (with a slight abuse of notation), then the map $N(\phi) : N(\mathcal{U}) \to N(\mathcal{V})$ given on the vertices by ϕ is simplicial.

Proof. Let $\sigma \in N(\mathcal{U})$. We need to show that the intersection $\bigcap_{\beta \in \varphi(\sigma)} V_{\beta}$ is non-empty.

$$\bigcap_{\beta\in\phi(\sigma)}V_{\beta}=\bigcap_{\alpha\in\sigma}V_{\phi(\alpha)}\supseteq\bigcap_{\alpha\in\sigma}U_{\alpha}\neq\emptyset$$

Thus, $\varphi(\sigma) \in \mathsf{N}(\mathcal{V})$.

Proposition 3. Let $f: X \to Z$ be some map, and \mathcal{U}, \mathcal{V} be covers of Z, with $\varphi: \mathcal{U} \to \mathcal{V}$ some map of covers. Then, there exists a map of covers $f^*(\varphi): f^*(\mathcal{U}) \to f^*(\mathcal{V})$.

Recall that $f^*(\mathcal{U})$ is the cover of X consisting of the connected components of the preimages of the sets of \mathcal{U} under f.

Proof. For every α , we have $U_{\alpha} \subseteq V_{\phi(\alpha)} \Longrightarrow f^{-1}(U_{\alpha}) \subseteq f^{-1}(V_{\phi(\alpha)})$. We now need to go from these preimages to their connected components. Since every connected component of $f^{-1}(U_{\alpha})$ must lie in a unique connected component of $f^{-1}(V_{\phi(\alpha)})$, our desired map of covers is given by exactly mapping to this connected component. \Box

If we have multiple maps of covers, $\mathcal{U} \xrightarrow{\phi} \mathcal{V} \xrightarrow{\psi} \mathcal{W}$, we can concatenate the maps, and the f^* function distributes: $f^*(\psi \circ \varphi) = f^*(\psi) \circ f^*(\varphi)$.

Let $\mathfrak{U} = \mathcal{U}_1 \xrightarrow{\phi_1} \mathcal{U}_2 \xrightarrow{\phi_2} \ldots \xrightarrow{\phi_{n-1}} \mathcal{U}_n$ be a sequence of covers of Z with maps between them, which we call a *cover tower*. By applying f^* we get a cover tower $f^*(\mathfrak{U})$ of X.

Definition 4 (Multiscale Mapper). Let $f: X \to Z$, \mathfrak{U} a cover tower of Z. Then, the Multiscale Mapper $MM(\mathfrak{U}, f)$ is

$$\mathsf{MM}(\mathfrak{U}, \mathsf{f}) := \mathsf{N}(\mathsf{f}^*(\mathfrak{U})) = \{\mathsf{N}(\mathsf{f}^*(\mathcal{U}_i)) \mid \mathcal{U}_i \in \mathfrak{U}\})$$

together with the induced simplicial maps

$$N(f^*(\phi_i)): N(f^*(\mathcal{U}_i)) \to N(f^*(\rangle + \infty)).$$

Applying homology, we get the sequence homology groups with induced homomorphisms between them, i.e., a persistence module:

$$H_p(N(f^*(\mathcal{U}_1))) \stackrel{N(f^*(\varphi_1))}{\to} \dots \stackrel{N(f^*(\varphi_{n-1}))}{\to} H_p(N(f^*(\mathcal{U}_n))).$$

We can now view $Dgm_pMM(\mathfrak{U},f)$ as a topological summary of f through the lens of \mathfrak{U} .

Where already the normal Mapper has so many input parameters that using it is somewhat of an art form more than a single tool we can just throw onto a topological space, the Multiscale Mapper adds even more parameters. But, in some way a cover tower can also be seen as a way of looking at a whole interval of some of the parameters. For example, we can get a cover tower by increasing the size of all intervals in an interval cover. The features of the data should show up as a robust feature that persists for a longer time over this process, while spurious features obtained from choosing "wrong" Mapper parameters should disappear quickly.