
Institute of Theoretical Computer Science

Patrick Schnider

Introduction to Topological Data Analysis Scribe Notes 24 FS23

Scribe notes by Simon Weber. Please contact me for corrections.
Lecture date: May 26, 2023
Last update: Friday 26th May, 2023, 13:54

Optimal Generators

In a homology class, there are many homologous cycles. Furthermore, there are many
di�erent choices of homology classes which form a basis of the homology group. Thus,
there are many di�erent choices for cycles as bases of the homology group. How do we
�nd good bases?

We de�ne a weight function w : Kp → R�0 on the p-simplices, and the weight of a chain
is simply the sum, i.e., w(c) =

∑
αiw(σi) for c =

∑
αiσi. The weight of a set of cycles

C is then the sum of weights of each cycle.

Definition 1. A set C of cycles is an optimal basis for Hp(K) if it is a basis and there

is no other basis C 0 with w(C 0) < w(C).

How can we compute such an optimal basis?

In a �rst step, we are going to compute a set of cycles C which contains an optimal basis.
Then, we sort the cycles by increasing weight, and pick the �rst cycle to be part of our
basis B. Then, we simply iterate through our cycles and add a cycle ci to our basis
if it cannot be written as a linear combination of our current basis. Finally, if c1 is a
boundary, we return the B \ {c1}, and otherwise we return B.

To do this, we need to be able to compute our beginning set C. Furthermore, we need
to be able to check linear independence.

From now on, we will focus on computing a basis for H1(K). Without loss of generality,
we say that K is 2-dimensional, with n triangles, O(n) edges and vertices. To compute
C, we begin with C = ;. For all vertices v, we compute the shortest path tree Tv rooted
at v. We can do this for example with Dijkstra's algorithm. For every edge e that is not
in Tv, we add the unique cycle in Tv [{e} to C. This can be implemented in O(n2 logn),
and yields a set of cycles with |C| 2 O(n2). But, we need to prove that it is indeed a set
which contains an optimal basis.

Lemma 2. C as computed by the algorithm above contains an optimal basis.

1

Proof. Let C� be an optimal basis, and towards a contradiction, let c be a cycle contained
in C� \ C. As the weights are non-negative, we can assume that c is simple, i.e., no edge
is used multiple times.

Let v be a vertex in c, and let Tv be the corresponding shortest path tree. There must
be an edge e = {u,w} in c, which is not in Tv, since Tv is a tree. Let Πv,u and Πv,w be the
shortest paths from v to u,w respectively. These paths must be contained in Tv. Let us
similarly consider Π 0

v,u and Π
0
v,w to be the (shortest) paths from v to u,w in c. We know

that not both Π 0
v,u = Πv,u and Π

0
v,w = Πv,w, so w.l.o.g. assume that Π 0

v,u 6= Πv,u.

We now de�ne the cycle c1 = {Π 0
v,w, e, Πv,u} and c2 = {Πv,u, Π

0
v,u}. We can now see that

as we work in Z2, c = c1 + c2. Furthermore, we have w(c1) � w(c), since Πv,u is a
shortest path (in K), while Π 0

v,u is not necessarily shortest. The same also holds for c2:
w(c2) � w(c) since {Π 0

v,w, e} can not be shorter than Πv,u.

Let us now consider the homology classes of c1 and c2. If both [c1] and [c2] were dependent
on C� \ {c}, then so would [c], since c = c1+ c2. Then, C

� would not be a basis. Thus, at
least one of [c1] and [c2] has to be dependent of C� \ {c}. Let us consider �rst that c1 is
independent. Then, we could replace c by c1 in C

� and get a basis which is at least as
good as C�. We can repeat the argument for that basis with v 0, the common ancestor of
Πv,u and Π 0

v,w. If c2 is independent, we replace c by c2 in C
� and repeat the argument

with v 0 the common ancestor of Πv,u, Π
0
v,u and e an edge incident to u.

At the end, we get a basis C 0 with w(C 0) � w(C�) with C 0 � C.

So, we have �nished the �rst step of our algorithm. It remains to �gure out how to check
independence. For this, we introduce annotations.

Definition 3. An annotation of p-simplices is a function a : Kp → Z − 2g giving each

p-simplex a binary vector of size g. This extends to chains by sums. An annotation

must ful�ll:

• g = βp(K)

• a(z1) = a(z2) i� [z1] = [z2].

Given an annotation, we can now clearly check linear independence of cycles by simply
checking linear independence of a set of vectors, for which we have existing tools such
as Gaussian eliminations.

Proposition 4. In every simplicial complex K and for every p � 0, there exists an

annotation of p-simplices, and can also be computed.

Proof. (sketch for p = 1) We can compute a spanning forest T , and let m be the number
of remaining edges. We initialize annotations of length m, and set a(e) = 0 for every
edge in the spanning forest T . For every remaining edge ei, we set aj(ei) = 1 if and only
if j = i, and 0 otherwise.

2

For every triangle t, if the annotation of its boundary δt is not 0, we �nd a non-zero
entry bu in a(δt) and add a(δt) to every edge with au(e) = 1, and we delete the u-th
entry from all annotations. One can show that this yields a valid annotation, and it can
be implemented in O(n3), and more clever implementations work in O(nω).

To check independence more e�ciently, we add auxiliary annotations also to vertices in
a shortest path tree Tv rooted at v. We give v the annotation 0, and for a vertex x that
is the child of y, we set a(x) := a(y) + a(exy). For every cycle de�ned by the non-tree
edge e = uw, we now have a(ce) = a(u) + a(w) + a(e). So, we never actually have
to compute an explicit representation of a cycle by its edges, we only need to store its
weight, the shortest path trees with the auxiliary annotations, and the non-tree edge e.
Note that the auxiliary annotations can be computed in O(gn) for the whole tree, thus
in O(gn2) for all trees.

Finally, we have to check independence. Given an (n �m) matrix M, we can �nd the
lexicographic leftmost set of independent columns in time O(max(n,m)ω). Instead of
naively doing this n2 times (once for every cycle), we group our cycles of C into groups
Ai of size g, and compute the leftmost set for [B|Ai], and thus we get O(n2gω−1) runtime
for this step.

To summarize, computing C takesO(n2 logn), sorting theO(n2) cycles also takesO(n2 logn),
and for checking linear independence we need O(nω) for the annotations of the edges,
O(gn2) for the auxiliary annotations, and O(n2gω−1) for the block-wise linear indepen-
dence checking. Overall, we thus get a runtime of O(nω + n2gω−1).

Persistent cycles

In the persistent setting, given a �ltration F and an interval [b, d], can we �nd an optimal
persistent p-cycle c that is born at b and dies at d.

Sadly, this problem is already known to be NP-hard for d <∞ and p � 1. However, if we
assume that K is a weak (p+1)-pseudomanifold, i.e., a simplicial complex in which each
p-simplex is a face of at most 2 (p + 1)-simplices, then there exists a polynomial-time
algorithm.

If we consider cycles that live until ∞, we can solve the problem in polynomial time for
p = 1, but it is NP-hard for p � 2. Here, the assumption of K being a weak (p + 1)-
pseudomanifold does not save us. However, if we further assume that the complex can
be embedded in Rp+1, then it is again polynomial.

To solve the problem for d <∞ in a weak (p+1)-pseudomanifold, we consider undirected
ow networks: We have a graph, where every edge has a capacity in [0,∞], some sources,
and some sinks, and we want to �nd the maximum ow we can send from the sources to
the sinks without sending too much ow through any edge. Recall that if we consider
a cut which separates the sources from the sinks, the capacity of this cut is an upper
bound on the value of the maximum ow. Furthermore, if we consider the minimum

3

such cut, its capacity is equal to the value of the maximum ow. This can be solved in
polynomial time.

We can build a dual graph G, by placing a vertex into every (p+ 1)-simplex and adding
an edge whenever they share a p-simplex. We furthermore add a dummy vertex which
gets connected to all vertices which only have one neighbor. We are going to make the
vertex belonging to the (p+ 1)-simplex which is the destructor of our desired cycle the
source. Furthermore, we make the dummy vertex as well as all vertices belonging to
(p + 1)-simplices added after the destructor into sinks. Edges added at or before the
birth are getting the capacity equal to their weight, while all other edges get capacity∞. Then, it turns out that the p-simplices belonging to the edges in a minimum cut
separating the sources from the sinks are an optimal persistent cycle.

4

