
Chapter 2

Mathematical Foundations

2.1 Topological Spaces

Topology, sometimes also called “rubber-sheet geometry”, stems from the Greek words
tópos, which means place or locality, and lógos, which means study. So, it can be roughly
translated as the study of places and shapes. Indeed, as the name rubber-sheet geometry
suggests, topology studies similar objects as geometry, but in a setting where properties
are preserved under continuous deformations like stretching and twisting. In particular,
these properties should be independent of metrics, but we would still like to have ways
to describe proximity between points. We do this by looking at open neighborhoods of
points. The core objects in topology are topological spaces, whose definition captures
the system of open neighborhoods of the points in the space.

Definition 2.1. A topological space (X, T) is a set of points X, with a system T of
subsets of X (called the topology on X), such that

1. ∅ ∈ T , X ∈ T .

2. For every S ⊆ T ,
⋃
S ∈ T .

3. For every finite S ⊆ T ,
⋂
S ∈ T .

The sets in T are called the open sets of X.

For example, setting X = R
2 and T to be the collection of open subsets (in the

geometric/calculus sense) of R2, we can check that (X, T) is a topological space. A
further example of a topological space is (X, 2X), where 2X denotes the family of all
subsets of X. This is called a discrete topology.

Another example is the Euclidean space X = R
d, where the open sets T are defined

as we know from calculus. This example also shows why we restrict the third condition
of the definition above only to finite intersections of open sets: If we allowed infinite
intersections in Condition 3, a set {p} consisting of a single point p ∈ Rd (which by the
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Chapter 2. Mathematical Foundations Introduction to TDA

calculus definition is not an open set) would have to be considered to be open; it is the
intersection of the infinite series of open balls of radius 1/n centered at p, for n ∈ N.

In most applications in these lecture notes, we work with subspaces of this Euclidean
space Rd. In that context we not only know the notion of open sets from calculus, but
also notions such as closed sets, closure, interior and boundary. These terms can also
be defined for abstract topological spaces:

Definition 2.2. A set Q ⊆ X is called closed, if its complement X \ Q is open. The
closure clQ is the smallest closed set containing Q. The interior intQ is the union
of all open subsets of Q. The boundary bndQ is the set minus its interior: bndQ =
Q \ intQ.

Note that sets can be open and closed simultaneously: in every topological space
(X, T), ∅ and X are such examples. In a discrete topology, every subset S ⊆ X is both
open and closed.

Exercise 2.3. Show that a finite union of closed sets is closed.

So far we have only seen two topological spaces: Euclidean space, and the (rather
boring) discrete topology on any set X. In order to see the value in the abstractions we
are doing, we would like to have more examples of topological spaces. In particular, it
would be great if we had a way to get new topological spaces from known ones. In the
following we discuss some ways to do this, starting with taking intersections.

Lemma 2.4. Let (X, T) be some topological space, and Y ⊆ X. Then, U := {A∩Y | A ∈ T }
is a topology on Y. We call this a subspace topology.

Proof. We check the three conditions of a topology:

1. ∅ = ∅ ∩ Y, therefore ∅ ∈ U. Similarly, Y = X ∩ Y, and thus Y ∈ U.

2.
⋃
i∈I(Ai ∩ Y) = (

⋃
i∈IAi) ∩ Y, and thus

⋃
i∈I(Ai ∩ Y) ∈ U.

3.
⋂n
i=1(Ai ∩ Y) = (

⋂n
i=1Ai) ∩ Y, and thus

⋂n
i=1(Ai ∩ Y) ∈ U.

Since we have seen a natural topology on Rd, this already gives us a natural topology
for all subsets of Rd.

Another way to get topological spaces is as a product of spaces. We will not discuss
the details of this here, and refer the interested reader to any textbook on topology, such
as the excellent book by Munkres [2].

Fact 2.5. Let (X, TX), (Y, TY) be two topological spaces. Then there exists a topology
on X× Y, called the product topology.

Finally, we can also get a topological space by taking the union of two disjoint topo-
logical spaces. If a space can be obtained as such a union, we call it disconnected:
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Introduction to TDA 2.2. Metric Spaces

Definition 2.6. A topological space (X, T) is disconnected, if there are two disjoint non-
empty open sets U,V ∈ T , such that X = U ∪ V. A topological space is connected, if
it is not disconnected.

Exercise 2.7. In this exercise, we will use topology to prove that the set of primes is
infinite.

We define the sets S(a, b) as follows:

S(a, b) := {an+ b | n ∈ Z}, ∀a ∈ Z \ {0}, b ∈ Z

We then say that a set U ⊆ Z is open, if and only if for all x ∈ U, there exists
a ∈ Z such that S(a, x) ⊆ U. This is equivalent to saying that every open set U is
a union of zero or more (including infinitely many) sets S(a, b).

(a) Show that this defines a topology on Z.

(b) Let A ⊂ Z be finite and non-empty. Show that Z \A cannot be closed.

(c) Show that S(a, b) is both open and closed.

(d) Show that⋃
p prime

S(p, 0) = Z \ {−1, 1}

(e) Conclude that there are infinitely many primes.

2.2 Metric Spaces

Recall that topological spaces should capture neighborhoods of points without requiring
the notion of a distance. However, if we do have distances, we should still be able to
use the framework of topological spaces. In other words, topological spaces should be a
generalization of spaces with distances.

Definition 2.8. A metric space (X, d) is a set X of points and a distance function
d : X× X→ R satisfying

1. d(p, q) = 0 if and only if p = q.

2. d(p, q) = d(q, p), ∀p, q ∈ X. (Symmetry)

3. d(p, q) ⩽ d(p, s) + d(s, q), ∀p, q, s ∈ X. (Triangle inequality)

Note that these three conditions imply that d(p, q) ⩾ 0 for all p, q ∈ X: If some
distance d(p, q) would be negative, we would have 0 = d(p, p) ⩽ d(p, q) + d(q, p) =
2 · d(p, q) < 0, a contradiction.

Fact 2.9. Every metric space has a topology (the metric space topology) given by the
open metric balls B(c, r) = {p ∈ X | d(p, c) < r} and their unions.
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2.3 Maps Between Topological Spaces

In most areas of mathematics, there are two things that are at the core of every theory:
objects, and mappings between them. For example, in linear algebra we study vector
spaces and the linear maps between then. Now that we have defined the objects of study
— topological spaces — we want to look at the mappings between them.

Definition 2.10. A function f : X → Y is continuous if for every open set U ⊆ Y, its
pre-image f−1(U) ⊆ X (the set of all elements x ∈ X such that f(x) ∈ U) is open.
Continuous functions are also called maps. If f is an injective map, it is called an
embedding.

Let us give some examples:

• For X ⊆ Y, we write X ↪→ Y for the function f(x) = x, ∀x ∈ X. This function, which
is also called the inclusion map, is continuous: f−1(U) = U ∩ X, which is open in
the subspace topology on X.

• For a function f : R→ R, continuity agrees with the “ϵ-δ” definition of continuity
from calculus.

Exercise 2.11. A topological space (X, T) is called path-connected if any two points
x, y ∈ X can be joined by a path, i.e., there exists a map f : [0, 1] → X of the segment
[0, 1] ⊂ R onto X such that f(0) = x and f(1) = y. Prove that a path-connected space
is connected.

An important question we have to answer is when we want to consider two topological
spaces to be “the same”. In the rest of this section we develop some notions of equivalence
of topological spaces, each based on the existence of some continuous function(s).

Definition 2.12. A homeomorphism is a bijective map f : X → Y whose inverse is also
continuous. Two topological spaces are homeomorphic, if there is a homeomorphism
between them. We also write X ≃ Y to say that X, Y are homeomorphic.

To make sure that homeomorphism is a reasonable notion of equivalence, we should
check that it is indeed an equivalence relation.

Exercise 2.13. Show that the relation of being homeomorphic is an equivalence rela-
tion, that is, show that every space is homeomorphic to itself, show that the relation
is symmetric (X ≃ Y iff Y ≃ X), and show that ≃ is transitive (if X ≃ Y and Y ≃ Z,
then X ≃ Z).

Let us apply our definition to some examples, to see whether it captures our intuition:

• The boundary of a tetrahedron is homeomorphic to the sphere S2 (with both spaces
considered as a subspace of R3). A homeomorphism can be found by taking a point
c in the interior of the tetrahedron, and sending each point p of the boundary to
the point f(p) on the ray from c through p such that d(c, f(p)) = 1.
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Introduction to TDA 2.3. Maps Between Topological Spaces

• The open interval I := (−1, 1) is homeomorphic to R. The following map f is a
homeomorphism: f : I→ R, x 7→ x

1−|x|
. Its inverse is f−1 : R→ I, y 7→ y

1+|y|
.

• All knots (a knot is the image of an embedding of the circle into R3) are homeo-
morphic. Thus, we cannot distinguish between knots using only homeomorphism.

'

Figure 2.1: Two knots.

Exercise 2.14. Give an example of a map f : X→ Y that is bijective but not a homeo-
morphism.

Exercise 2.15. Consider a grid of 2 vertical line segments and k + 2 horizontal seg-

ments, for some k ⩾ 0. For k = 1, this looks as follows:

Now, we consider the problem of placing a point on each of the k + 2 horizontal
line segments, such that each of the k+ 4 total line segments contains at least one
point.

(a) How could one define a topology on the set of all such point placements?

(b) Convince yourself that this space is homeomorphic to Sk.

The example of the knots shows that in certain cases, homeomorphism does not
capture all the information we can use to distinguish two spaces. In this example, this
distinguishing information is not really stored in the topological spaces themselves, but
in the way they are embedded in the “ambient” space (in this example R3). In such
a case, where the two spaces we consider are both embedded into the same ambient
space, we can not only look at maps between the two spaces themselves, but we can also
consider whether one of them can be continuously deformed into the other:

Definition 2.16 ([1, Def. 1.18]). An isotopy connecting X ⊆ A and Y ⊆ A is a continuous
map ϕ : X× [0, 1] → A, such that ϕ(X, 0) = X, ϕ(X, 1) = Y, and ∀t ∈ [0, 1], ϕ(·, t) is a
homeomorphism between X and its image. Two spaces are called isotopic, if there
is an isotopy connecting them.

Exercise 2.17. Show that the relation of being isotopic is an equivalence relation.

Let us check isotopy on a few examples, starting with the knots from above:
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• The two knots from Figure 2.1 above (embedded in A = R
3) are homeomorphic

but not isotopic. Isotopy thus captures our intuition more accurately than home-
omorphism in this case.

• Let X ⊂ R be the union of {0}, and [1, 2], and let Y ⊂ R be the union of [0, 1] and
{2}. These spaces are homeomorphic (X ≃ Y), but not isotopic. Just as with the
knots, the difference between these spaces does not lie in their topology, but in the
way they are embedded into the ambient space R.

• Consider the two spaces in Figure 2.2, which are considered to be embedded in
the ambient space A consisting of R3 minus the grey infinitely long pole in the
middle. Do you think the spaces are isotopic? Most people would probably ar-
gue that they are not, as in the left space both loops of the handcuff are locked
around pole while in the right space one loop is free. However, it turns out that
the spaces are in fact isotopic. An isotopy is illustrated by the following video:
https://www.youtube.com/watch?v=wDZx9B4TAXo

Figure 2.2: Left: Both loops of the handcuffs are wrapped around an infinite pole.
Right: Only one loop of the handcuffs is wrapped around the infinite pole.
These spaces are isotopic.

Using isotopy we have now managed to distinguish between two spaces (embeddings)
that homeomorphism could not distinguish. On the other hand, homeomorphism is also
very restrictive: For example, any two-dimensional space X (such as the mantle of a
cylinder) cannot be homeomorphic to any one-dimensional space Y (such as a circle),
simply due to the difference in cardinality of X and Y. We thus also want to develop a
weaker notion of equivalence than homeomorphism.
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Introduction to TDA 2.3. Maps Between Topological Spaces

To do this, we take the idea of continuous deformations from isotopy, but instead of
applying it to deform spaces into each other, we deform maps into each other:

Definition 2.18. Let g, h be maps X → Y. A homotopy connecting g and h is a map
H : X × [0, 1] → Y such that H(·, 0) = g and H(·, 1) = h. In this case g and h are
called homotopic.

Before we use homotopies to define an equivalence on topological spaces, let us again
consider some examples:

• The inclusion map g : B3 ↪→ R
3 (where B3 is the unit ball in R3), and the constant

map h : B3 → R
3 which sends every point to the origin, are homotopic, as shown

by the homotopy
H(x, t) = (1− t)g(x).

• The identity map g : S1 → S1, and the constant map h : S1 → S1 which sends
everything to a single point p ∈ S1, are not homotopic.

The notion of homotopy now allows us to define our desired equivalence relation on
topological spaces that is weaker than homeomorphism. Intuitively, this relation says
that two spaces are the same if they can be continuously transformed into each other not
only by bending, twisting and stretching, but also by shrinking or blowing up parts of
different dimensions. However, note that unlike with isotopy, we do not need to consider
the two spaces to be embedded in any ambient space.

Definition 2.19. Two spaces X, Y are homotopy equivalent if there exist maps g : X→ Y

and h : Y → X such that:

• h ◦ g is homotopic to idX (the identity map x 7→ x), and

• g ◦ h is homotopic to idY.

Exercise 2.20. Show that the relation of being homotopy equivalent is an equivalence
relation.

Let us consider some examples:

• The circle S1 and R
2 \ {0} are homotopy equivalent: We pick g as the inclusion

map S1 ↪→ R
2 \ {0}, and h(x) := x

|x|
. We see that h ◦ g(x) = x, i.e., h ◦ g = idS1 .

Furthermore, g ◦h(x) = h(x). Finally, g ◦h and idR2\{0} are homotopic as certified
by the homotopy H(x, t) := tx+ (1− t)h(x).

• The cylinder mantle and the circle are homotopy equivalent, but not homeomor-
phic.

• Any ball Bd is homotopy equivalent to the single point. We call such spaces
contractible.
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The next lemma shows that homotopy equivalence is a strictly weaker notion than
homeomorphism:

Lemma 2.21. If X and Y are homeomorphic, they are also homotopy equivalent.

Proof. Let g : X→ Y be the homeomorphism, and h := g−1 its inverse. Then g◦h = idY
and h ◦ g = idX, and id is homotopic to itself.

With the need for two maps and a proof that they are homotopic, proving homotopy
equivalence directly can be quite tedious. The following notion of deformation retracts
gives an easy way of proving homotopy equivalence in some cases.

Definition 2.22. Let A ⊆ X. A deformation retract of X onto A is a map R : X×[0, 1] → X,
such that

• R(·, 0) = idX

• R(x, 1) ∈ A, ∀x ∈ X

• R(a, t) = a, ∀a ∈ A, t ∈ [0, 1]

If such a deformation retract of X onto A exists, we also say that A is a deformation
retract of X.

The intuition behind a deformation retract is that the map R continuously shrinks X
to A, while leaving A fixed. Note that unlike homeomorphism, isotopy and homotopy
equivalence, deformation retracts are inherently asymmetric.

Fact 2.23. If A is a deformation retract of X, then A and X are homotopy equivalent.

Let us use this to prove homotopy equivalence of some examples:

• The circle S1 is a deformation retract of R2 \ {0}: R(x, t) = (1 − t)x + t · x
|x|

. Note
how much easier this is to prove without needing to use the two maps h and g as
above.

• A punctured torus can be deformation retracted onto the symbol 8 where one of
the two circles is rotated by 90◦, as seen by the following video:
https://www.youtube.com/watch?v=tz3QWrfPQj4

One may think that deformation retracts are only useful for proving homotopy equiv-
alence when one space is a subspace of the other. However, the following fact shows that
deformation retracts can prove homotopy equivalence of any pair of spaces:

Fact 2.24. X, Y are homotopy equivalent if and only if there exists a space Z such
that X and Y are deformation retracts of Z.

An example of this fact can be found in Figure 2.3.
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Introduction to TDA 2.3. Maps Between Topological Spaces

Figure 2.3: The top space deformation retracts to both spaces below, showing that
they are homotopy equivalent.

Exercise 2.25. Sort the letters of the alphabet into equivalence classes under homotopy
equivalence.

Exercise 2.26. Show that both a cylinder and a Möbius strip are homotopy equivalent
to a circle.

Exercise 2.27. Let X be S2 where the north pole and the south pole have been glued
together, see Figure 2.4a. Let Y be S2 with an S1 attached at the north pole, see
Figure 2.4b.

(a) The space X. (b) The space Y.

Figure 2.4: The spaces from Exercise 2.27.

Give an informal argument that X and Y are homotopy equivalent. Bonus ques-
tion: Are they also homeomorphic?

We note that in general showing existence of a map with certain properties (e.g., a
homeomorphism, isotopy, homotopy) is easy: just give a map and show that it satisfies
the required properties. On the other hand, showing that such a map cannot exist is hard,
as there are usually infinitely many candidate maps. The idea of algebraic topology is to
identify invariant properties preserved by these maps. Then, we know that no map can
exist between spaces on which these invariants differ. An example of such an invariant is
the number of “holes” a space has, which we will formalize when we introduce the notion
of homology.
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2.4 Algebra

In this section we recap the necessary background in algebra that is needed for the basics
of homology theory. Just as in the previous sections, we first introduce the objects of
study, followed by the maps between them.

Definition 2.28. A group (G,+) is a set G together with a binary operation “+” such
that

1. ∀a, b ∈ G: a+ b ∈ G

2. ∀a, b, c ∈ G: (a+ b) + c = a+ (b+ c) (Associativity)

3. ∃0 ∈ G: a+ 0 = 0+ a = a ∀a ∈ G

4. ∀a ∈ G∃− a ∈ G: a+ (−a) = 0

(G,+) is abelian1 if we also have

5. ∀a, b ∈ G: a+ b = b+ a (Commutativity)

Let us point out some examples:

• (Z,+) is a group (even an abelian one), but (N,+) is not, since any non-zero
number does not have an inverse element.

• Consider the (very large) set of all sequences of moves of a Rubik’s cube that do
not contain a subsequence equivalent to doing nothing. This set forms a group
(with the “+” operation being concatenation), but not an abelian one: let L denote
moving the left face clockwise, and let U denote moving the upper face clockwise.
Replacing “clockwise” by counter-clockwise we get −L and −U, respectively. Now,
if the group was abelian, then L+U−L−U should give the same configuration again,
but if you do these moves on a Rubik’s cube, you will see that the configuration
has changed.

As groups can be very large, even infinitely large, it can be useful to have a concise
way of writing them:

Definition 2.29. Let (G,+) be a group.
A subset A ⊆ G is a generator if every element of G can be written as a finite sum
of elements of A and their inverses.
A subset B ⊆ G is a basis if every element of G can be uniquely written as a
finite sum of elements of B and their inverses (ignoring trivial cancellations, i.e.,
a+ c+ (−c) + (−b) = a+ (−b)).
An abelian group that has a basis is called free.

1Note that unlike other mathematical concepts named after a person, abelian is usually not capitalized.
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Examples:

• The six standard moves of the Rubik’s cube (rotating the top, bottom, front, back,
left, or right layer clockwise by 90◦) are a generator for the Rubik’s cube move
sequences.

• {1} is a basis of (Z,+).

Exercise 2.30. A cyclic group is a group G that contains an element g ∈ G such that
{g} is a generator of G. Show that every cyclic group is abelian (commutative).

Exercise 2.31. Consider a Rubik’s cube. Prove that no sequence X of elementary
moves exists such that every Rubik’s cube can be solved by repeatedly applying X.

Definition 2.32. For some group (G,+), H ⊆ G is a subgroup, if (H,+) is also a group.

For example, the even integers (including 0) are a subgroup of (Z,+). Subgroups are
important in group theory, as they can be used to partition a group into several parts:

Definition 2.33. Let H ⊆ G be a subgroup of (G,+), and a ∈ G.
The left coset a+H is the set a+H := {a+ b | b ∈ H}, and the right coset H+ a :=
{b+ a | b ∈ H}. If G is abelian, a+H = H+ a, and they are simply called the coset.
For G abelian, the quotient group of G by H, denoted by G/H, is the group on the set
of cosets {a+H,a ∈ G} with the operation ⊕ defined as (a+H)⊕(b+H) = (a+b)+H,
∀a, b ∈ G.

Examples:

• Let G = (Z,+) and H = nZ = {n ·a | a ∈ Z}. Then, G/H = {0+Z, 1+Z, . . . , (n−
1) + Z} is the group usually referred to as Zn, the group of modular arithmetic
modulo n.

• R/Z is the circle group (the multiplicative group of all complex numbers of absolute
value 1). Try and convince yourself of this!

In order to compare groups with each other, we again want a notion of maps between
groups, that behave well with the group structures:

Definition 2.34. A map h : G → H between abelian groups (G,+) and (H, ⋆) is a
homomorphism if h(a+ b) = h(a) ⋆ h(b), ∀a, b ∈ G.
A bijective homomorphism is called an isomorphism, and then we write G ∼= H and
say that G and H are isomorphic.

kernel kerh := {a ∈ G | h(a) = 0}

image imh := {b ∈ H | ∃a ∈ G with h(a) = b}

cokernel cokerh := H/ imh
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Note that we are assuming something in our definition of the cokernel: for the defi-
nition of a quotient group to apply, we need the divisor group to be a subgroup of the
dividend group. Luckily, the following lemma says that imh is always a subgroup of H.

Lemma 2.35. kerh and imh are subgroups of (G,+) and (H, ⋆), respectively.

Proof. We first prove this for kerh.

1. a, b ∈ kerh ⇒ h(a) = h(b) = 0. By definition of homomorphism, h(a + b) =
h(a) ⋆h(b) = 0 ⋆ 0 = 0, and thus by definition of kerh, a+b ∈ kerh. We conclude
that kerh is closed under +.

2. Associativity follows from associativity of + in G, since kerh ⊆ G.

3. ∀a ∈ G : h(0) ⋆ h(a) = h(0 + a) = h(a), and thus h(0) = 0, from which 0 ∈ kerh
follows.

4. Let a ∈ kerh. Then, 0 = h(0) = h(a − a) = h(a) ⋆ h(−a) = 0 ⋆ h(−a) = h(−a),
and thus −a ∈ kerh.

The proof for imh is left as an exercise.

Exercise 2.36. Show that imh is a subgroup of H.

Exercise 2.37. For two abelian groups (G, ⋆) and (H,+), let the set of all homomor-
phisms f : G→ H be denoted by Hom(G,H).

(a) Show that (Hom(G,H),⊕), where the operation ⊕ is defined as

(f⊕ g)(x) = f(x) + g(x), ∀x ∈ G,

is also a group.

(b) Show that Hom(Z22,Z2)
∼= Z22.

As the example of the integers shows, a big motivation for the study of groups comes
from number theory. However, in number theory we do not only have addition but also
multiplication. This motivates the following definition:

Definition 2.38. (R,+, ·) is a ring, if

1. (R,+) is an abelian group.

2. ∀a, b, c ∈ R:
(a · b) · c = a · (b · c) and (Associativity of ·)
a · (b+ c) = a · b+ a · c,
(b+ c) · a = b · a+ c · a (Distributivity)
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3. ∃1 ∈ R, such that a · 1 = 1 · a = a ∀a ∈ R. (Multiplicative identity)

If · is commutative, we say that R is commutative.

Definition 2.39. A commutative ring in which every non-zero element has a multi-
plicative inverse (i.e., ∀a ∈ R \ {0}, ∃b ∈ R : a · b = 1) is called a field.

Another important area of algebra, which you already know, is linear algebra. Here,
vectors can be added and subtracted. Further the field of real numbers are called scalars
and they can be multiplied with vectors. So, we have very similar operations at hand.
This motivates the following generalization of the concept of vector spaces.

Definition 2.40. Given a ring (R,+, ·) with multiplicative identity 1, an R-module M is
an abelian group (M,⊕) with an operation ⊗ : R×M→M such that for all r, r ′ ∈ R
and x, y ∈M, we have

1. r⊗ (x⊕ y) = (r⊗ x)⊕ (r⊗ y)

2. (r+ r ′)⊗ x = (r⊗ x)⊕ (r ′ ⊗ x)

3. 1⊗ x = x

4. (r · r ′)⊗ x = r⊗ (r ′ ⊗ x)

If R is a field, the R-module is called a vector space.

In the literature, often the same symbol (·) is used for both operations · and ⊗, and
+ for both + in R and ⊕ in M. For a vector space, this should feel quite normal, since
for the vector space Rn (which is an R-module), we also write · for multiplying scalars
to both scalars and vectors, and + for addition of both scalars and vectors.

Modules appear all over the place in homology theory. In some cases, in particular
in all the cases we discuss in these lecture notes, the modules happen to be vector
spaces. Thus, most of what we discuss in the following chapters could be phrased using
only language from linear algebra. However, to be consistent with most of the existing
literature, we will phrase most results in a slightly more general language.
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Questions

1. What is a topological space? Give the formal definition and some examples.

2. What is a continuous map between topological spaces? What is a homeomor-
phism? State the definitions and give examples.

3. What is a homotopy? What is a homotopy equivalence? Give the formal
definitions. Further, define deformation retracts and use them to give an alternative
definition of homotopy equivalence.

4. What are groups and the maps between them? State the definitions and prove
that the image and kernel are subgroups.
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