
Chapter 3

Homology

In this chapter, we introduce homology, a fundamental concept in algebraic topology
and, as the name suggests, a crucial element of the persistent homology pipeline in
topological data analysis. Very informally, homology can be used to count the number
of “holes” of a topological space, where holes can have any dimension. While you might
have an intuition of what a 2-dimensional hole in a subspace of R2 might be, it is not
at all clear what a 4-dimensional hole in some 7-dimensional space should be. The main
idea of homology is to use algebra to talk about holes in an abstract setting.

As we have already hinted at in the previous chapter, homology is an invariant of
topological spaces preserved under homeomorphism and homotopy equivalence. We will
manage to make this formal in Section 3.2.8.

3.1 Simplicial Complexes

In order to define homology, we restrict our attention (for now) to special types of topo-
logical spaces, namely simplicial complexes. We will see that this covers most natural
spaces. Furthermore, homology for simplicial complexes is sufficient for all classical ap-
plications in topological data analysis. We will briefly outline a more general definition
later in the chapter.

While simplicial complexes can be regarded as completely abstract objects, it is more
intuitive to think of them in a geometric setting. The basic objects in a geometric
simplicial complex are simplices :

Definition 3.1. A k-simplex in Rd is the convex hull of k+1 affinely independent points
in R

d.

A face of a simplex is the convex hull of a subset of its vertices. In particular, every
face of a simplex is also a simplex. The empty set ∅ is also a face. The (k− 1)-faces of a
k-simplex are called facets. We say the dimension of a k-simplex is k.

Definition 3.2. A geometric simplicial complex is a family K of simplices such that
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Chapter 3. Homology Introduction to TDA

• if τ ∈ K and σ is a face of τ, then σ ∈ K, and

• for σ, τ ∈ K, their intersection σ ∩ τ is a face of both.

Figure 3.1: Some examples of simplices: a point (0-dimensional), a line segment
(1-dimensional), a triangle (2-dimensional) and a (filled) tetrahedron
(3-dimensional).

Figure 3.2: The left is a simplicial complex. The right is not, as the intersection of
the two triangles is not a face of both of them.

We say the dimension of a simplicial complex is the maximum dimension of any
simplex. In these lecture notes, and for applications in topological data analysis in
general, we may assume that all simplicial complexes are finite, that is, consisting of
finitely many simplices.

The way we defined them, simplicial complexes are geometric objects. To arrive
at a purely combinatorial description, we can simply forget about the points in space
spanning our simplices.

Definition 3.3. An abstract simplicial complex K is a family of subsets of a vertex set
V(K) such that if τ ∈ K and σ ⊆ τ, then σ ∈ K.

A k-simplex here is a subset of k+ 1 elements, and thus again called k-dimensional.
Note that 1-dimensional abstract simplicial complexes are exactly graphs: they are de-
fined by a vertex set V and a system of two-element subsets of V, called edges.
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Introduction to TDA 3.1. Simplicial Complexes

From every geometric simplicial complex we get an abstract simplicial complex by
simply taking the set of points as the vertex set and adding the correct subset for every
simplex. For the inverse direction, we have to talk about geometric realizations:

Definition 3.4. A geometric simplicial complex K is a geometric realization of some
abstract simplicial complex K ′, if there is an embedding e : V(K ′) → R

d that takes
every (abstract) k-simplex {v0, . . . , vk} in K ′ to the (geometric) k-simplex that is the
convex hull of e(v0), . . . , e(vk).

Does every abstract simplicial complex have a geometric realization? Let us only
consider 1-dimensional complexes (graphs) for now. We know that not all graphs admit
a straight-line embedding in the plane, as only planar graphs admit any embedding, i.e.,
crossing-free drawing, in the plane. However, by placing the vertices in R3 in such a way
that no four vertices lie on a common plane, we see that we can always find a geometric
realization of a graph in R3. This generalizes to the following realization theorem:

Theorem 3.5. Every k-dimensional simplicial complex has a geometric realization in
R
2k+1.

Proof. Place the vertices as distinct points on the moment curve in R
2k+1, which is

the curve given by f(t) = (t, t2, . . . , t2k+1). This way, any 2k+2 of the placed points are
affinely independent. Thus, any two faces with disjoint vertex sets will not intersect in
the realization, showing that the realization is indeed an embedding.

Since we now know that abstract and geometric simplicial complexes can be translated
into one another, we will not make the distinction between them again and just use the
word simplicial complex for both objects in the following. As a subset of Euclidean
space, a simplicial complex thus also inherits the subspace topology from R

d, which
allows us to view simplicial complexes as topological spaces. We usually write K for the
simplicial complex as a family of sets, and |K| for the underlying topological space.

On the other hand, most topological spaces are not simplicial complexes. For example,
the 2-sphere S2 is not a simplicial complex, as it is not defined by a vertex set and faces.
However, the boundary of a tetrahedron is a simplicial complex, and it is homeomorphic
to S2. Considering that we want to consider properties invariant under homeomorphism,
we thus might as well work with the boundary of a tetrahedron instead of with S2. This
motivates the following definition.

Definition 3.6. A simplicial complex K is a triangulation of a topological space X, if
|K| is homeomorphic to X. We say that a topological space X is triangulable if it has
a triangulation.

Triangulable spaces are nice for us, as we can replace them by simplicial complexes
without any loss of topological information. Unfortunately, not all topological spaces are
triangulable, but in this course we will not deal with such spaces.
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Chapter 3. Homology Introduction to TDA

While triangulations give us simplicial complexes from (triangulable) topological
spaces, we would like to mention that one can also go the other way: many combi-
natorial structures naturally give rise to (abstract) simplicial complexes, which can in
turn be interpreted as topological spaces. Thus, we can use the machinery of topological
methods for gaining insights into many combinatorial problems. This gives rise to a sub-
field of combinatorics called topological combinatorics, where the topology of simplicial
complexes associated to combinatorial objects is studied. Let us give some examples of
such simplicial complexes.

• As we have already discussed, graphs are equivalent to 1-dimensional simplicial
complexes.

• Given a graph G = (V, E), we can define a simplicial complex on V by including
a face {v1, . . . , vk} whenever these vertices form a clique in G. This is called the
clique complex of G.

• For a poset (P,⩽), the set of all chains of P forms a simplicial complex, giving rise
to the order topology.

In topological data analysis, a highly relevant example is the nerve, which records
the intersection pattern of a collection of sets:

Definition 3.7. For a finite collection U of sets, its nerve N(U) is a simplicial complex
on the vertex set U that contains u0, . . . , uk as a k-simplex iff u0 ∩ . . . ∩ uk ̸= ∅.

While the nerve can be seen as a purely combinatorial object describing the inter-
section pattern of U, it is also interesting to study its topology. If the considered sets in
U are subsets of some topological space X, there is a very strong characterization of the
topology of N(U), if the intersections of sets in U are “well-behaved”.

Definition 3.8. Let X be a topological space, and U a finite family of closed subsets
of X. We call U a good cover, if every non-empty intersection of sets in U is
contractible.

Under these conditions on the sets we get the following, very powerful theorem,
which allows us to relate complex spaces (unions of sets) with a much simpler simplicial
complex, namely the nerve of these sets. For a proof of this we refer to any textbook on
algebraic topology, for example the one by Hatcher [2].

Theorem 3.9 (Nerve theorem). If U is a good cover, then |N(U)| is homotopy equivalent
to

⋃
U.

The nerve theorem also holds if all the sets in U are open with contractible intersec-
tions, but it may fail if some sets in U are closed, and some open: We can have an open
and a closed set which do not intersect, but whose union is connected.

Now that we have defined simplicial complexes and considered some examples, we
once again want to study maps between them. The study of simplicial complexes and
the maps between them, as we will define them, is called combinatorial topology.
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Introduction to TDA 3.1. Simplicial Complexes

Definition 3.10. A vertex map f : V(K1) → V(K2) maps vertices in K1 to vertices in K2.

Definition 3.11. A map f : K1 → K2 is called simplicial if it can be described by a
vertex map g : V(K1) → V(K2) such that for every simplex {v0, . . . , vk} we have
f({v0, . . . , vk}) = {g(v0), . . . , g(vk)}. Since f maps to K2 we must have that f({v0, . . . , vk})
is a simplex in K2. A simplicial map can also be seen as a map on the underlying
spaces f : |K1| → |K2|.

Note that for a map to be simplicial, we do not require that {f(v0), . . . , f(vk)} is also
a k-dimensional simplex, we merely require that it is a simplex of K2. It is thus possible
that distinct vertices of K1 are mapped to the same vertex of K2.

Recall that simplicial complexes are topological spaces, so there is also the notion of
continuous maps between them. It can be shown that every simplicial map is continuous.

Exercise 3.12. Let f : |K1| → |K2| be a simplicial map. Show that f is continuous.

On the other hand, continuous maps in general do not need to map vertices to
vertices, and are thus not simplicial. Simplicial maps are therefore more restrictive than
continuous maps. However, the difference of the two concepts is smaller than one might
think at first glance.

Fact 3.13. Every continuous map f : |K1| → |K2| can be approximated arbitrarily
closely by simplicial maps on appropriate subdivisions of K1 and K2.

This shows that we can consider simplicial maps to be the analogue of continu-
ous maps in the world of simplicial complexes. This begs the question whether other
definitions from topology, such as homotopies or deformation retracts, have simplicial
analogues. As we will see in the next few definitions, they do.

Definition 3.14. Two simplicial maps f1, f2 : K1 → K2 are contiguous if for every
simplex σ ∈ K1 we have that f1(σ) ∪ f2(σ) is a simplex in K2.

This is the simplicial analogue of two continuous maps being homotopic. We can thus
show two simplicial complexes to be homotopy equivalent by providing two simplicial
maps f : K1 → K2 and g : K2 → K1 such that g ◦ f is contiguous with the identity map
on K1 and f ◦ g is contiguous with the identity map on K2.

Definition 3.15. A face of a simplicial complex is called free, if it is non-maximal (not
inclusion-maximal) and contained in a unique maximal face.

Note that every face that is a superset of a free face is either a maximal face or also
free.

Definition 3.16. A collapse is the operation of removing all faces γ that are a superset
of some fixed free face τ (including τ itself). A simplicial complex is collapsible if
there is a sequence of collapses leading to a single point.
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Chapter 3. Homology Introduction to TDA

A collapse can be written as a deformation retract. Thus, a simplicial complex that
is collapsible is contractible, and we consider collapses to be the simplicial analogue of
deformation retracts.

You might wonder whether every contractible simplicial complex is also collapsi-
ble. We will see that this not hold: A good counterexample for this is Bing’s house
with two rooms, see Figure 3.3. In any triangulation of it, there are no free faces: As
a 2-dimensional space, there are only vertices, edges and triangles. We only have to
check edges, since triangles are maximal, and vertices are part of edges which are never
maximal. Every edge is incident to at least two triangles (there are no edges on the
“boundary”), and thus they are not free. Since we have no free faces, it is not collapsible.

Figure 3.3: Bing’s house with two rooms. Image taken from [2].

On the other hand, Bing’s house is contractible: both Bing’s house and a point are
deformation retracts of a 3-dimensional ball, and thus by Fact 2.24 they are homotopy
equivalent. For a visual sketch of the deformation retract from a 3-dimensional ball to
Bing’s house, see Figure 3.4.

To summarize, the connection between simplicial complexes and topological spaces is
that every simplicial complex defines a topological space, since we can consider a geomet-
ric embedding, and the underlying space of the embedding inherits the subspace topology
from R

d. On the other hand, some topological spaces (the triangulable ones) can be ex-
pressed by simplicial complexes. As for maps, every simplicial map is continuous. On
the other hand, continuous maps between simplicial complexes can be approximated by
simplicial maps between subdivisions of the simplicial complexes. A similar property
holds between homotopic maps and contiguous maps, as well as between deformation
retracts and collapses. In general, we can say that the terms in combinatorial topol-
ogy are special cases of their “continuous” counterparts, and if we consider triangulable
spaces, the continuous terms can be approximated in some way by their combinatorial
counterparts. The terms can thus be considered to be equivalent.

Table 3.1 summarizes the equivalent words in “continuous topology” on triangulable
spaces and in combinatorial topology on simplicial complexes.

30



Introduction to TDA 3.2. Homology

Figure 3.4: A visual representation of the deformation retract from a 3-dimensional
ball to Bing’s house. Images taken from the blog Sketches of topology [1].

“continuous” topology combinatorial topology
topological spaces simplicial complexes
continuous maps simplicial maps
homotopic maps contiguous maps

deformation retracts collapses

Table 3.1: Equivalent notions in “continuous” and combinatorial topology

3.2 Homology

Recall that homology is intended as a tool to count holes in objects, and recall that
this hole count is intended as an invariant of topological spaces under homotopy equiv-
alence. We have introduced simplicial complexes, which allow us to consider concrete
combinatorial descriptions instead of abstract topological spaces.

Let us begin with some basic intuition for holes in simplicial complexes, before diving
into the more technical definitions. Consider the two simplicial complexes shown in
Figure 3.5. How many (and what kind of) holes should these complexes intuitively
have?
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Chapter 3. Homology Introduction to TDA

K1 K2

a ab b

c

c

d d

Figure 3.5: Two simplicial complexes. K1 contains all four triangles
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} as well as their subsets, while K2
only contains the three triangles {a, b, c}, {a, c, d}, {b, c, d} and their sub-
sets.

As can be seen, K1 is the boundary of a tetrahedron. It is a triangulation of the
2-dimensional (hollow) sphere, so we would like to say that it has a hole, or cavity. In
particular, because this cavity is of the same dimension as the cavity in the 2-dimensional
sphere, we want to call this cavity a 2-dimensional hole.

On the other hand, K2 can be viewed as a triangulation of four points in the plane,
where the point a lies inside the convex hull of the other three points. It is homeomorphic
to a 2-dimensional disk. Intuitively we would like to say that the complex K2 does not
have any holes.

As a 2-dimensional disk, K2 has a boundary, consisting of the edges {a, b}, {b, d}

and {a, d}. On the other hand, K1 has no boundary, just as a sphere has no boundary.
We will later define a notion of boundary capturing this intuition, at least for pure
simplicial complexes, that is, simplicial complexes whose maximal faces all have the same
dimension. For example, a 1-dimensional pure simplicial complex is just a graph with
no isolated vertices. In such a graph, the boundary will contain all the leaves (vertices
of degree 1). Some complexes, like K1, will have an empty boundary, and in analogy
to graphs without leaves we call such complexes cycles1. Under this viewpoint, our d-
dimensional holes of a simplicial complex K should be d-dimensional pure subcomplexes
that are cycles. On the other hand, clearly not all cycles should be holes, as can be seen
with the boundary of K2. This boundary (the three edges {a, b}, {b, d} and {a, d}) itself
does not have a boundary, and is thus a 1-dimensional cycle. However we do not want to
consider this cycle as a 1-dimensional hole of K2 since it is “filled up”, it is the boundary
of the three filled in triangles.

Summed up, our intuition is that holes are subcomplexes that have no boundary
(cycles) and that are not themselves boundaries of another subcomplex which would be
filling in the hole. In the following we will make this intuition precise by defining the
types of subcomplexes we consider, the notions of boundaries and cycles, and how to
mathematically describe the cycles that are not boundaries.

1Note that technically graphs without leaves are not necessarily just cycles, but can also consist of
multiple cycles glued together at vertices and edges.
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3.2.1 Chains

In the following we let K be a simplicial complex, and we use mp to denote the number
of p-simplices in K. We first want to define p-chains, which are simply an algebraic way
of formalizing and generalizing subsets of p-simplices.

Definition 3.17. A p-chain c (in K) is a formal sum of p-simplices added with some
coefficients from some ring R. A p-chain c can thus be written as

c =

mp∑
i=1

αiσi,

where αi ∈ R and σi ∈ K are p-simplices.

All we are doing in this formal sum is giving a coefficient from R to each p-simplex
of K. A formal sum is only a sum in a syntactic sense (i.e., we use the symbols +
and

∑
), but there is no semantic meaning behind this operation; there is no other way

to represent a chain other than the sum it is defined by.
Using the addition operation of the ring R however, we can now also add two p-chains

c =
∑
αiσi and c ′ =

∑
α ′
iσi (both in K). Since the chains are both just formal sums,

we can simply do this addition “component-wise”, using addition in R on the coefficients:

c+ c ′ :=

mp∑
i=1

(αi + α
′
i)σi

We therefore have an addition operation on the set Cp(K) of all p-chains in K. We
show next that Cp(K) endowed with this operation forms a group, and we call it the
p-th chain group (of K).

Observation 3.18. (Cp(K),+) is an abelian group, it is free, and the p-simplices form
a basis.

Proof. To show that it is a group we observe that:

1. Cp(K) is closed under addition, since ∀c1, c2 ∈ Cp(K) we have c1 + c2 ∈ Cp(K).

2. The operation + is associative: ∀c1, c2, c3 ∈ Cp(K),
(c1 + c2) + c3 =

∑
(α

(1)
i + α

(2)
i )σi +

∑
α
(3)
i σi =

∑
(α

(1)
i + α

(2)
i + α

(3)
i )σi =∑

α
(1)
i σi +

∑
(α

(2)
i + α

(3)
i )σi = c1 + (c2 + c3).

3. We have a neutral element 0 =
∑
0σi ∈ Cp(K).

4. Every element has an inverse: ∀c ∈ Cp(K) we have −c =
∑

(−αiσi) ∈ Cp(K) and
c+ (−c) =

∑
(αi − αi)σi = 0.
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Commutativity follows from + in R being commutative (recall that for any ring (R,+, ·),
(R,+) is an abelian group), thus the group is abelian. Finally, the p-simplices clearly form
a basis since the set of chains is defined as the set of formal sums of these p-simplices.

We can further turn Cp(K) into an R-module:

Observation 3.19. Equipped with the appropriate function · : R×Cp(K) → Cp(K), Cp(K)
is an R-module.

Proof (sketch). We can define r ·c by simply using the multiplication · of R component-
wise on each coefficient of c, i.e., r ·

∑mp

i=1 αiσi =
∑mp

i=1(r · αi)σi. We leave the proof of
the necessary properties as an exercise.

From now on we will always work with one of the simplest possible rings, the ring
R = Z2. In particular this allows us to simply view chains as sets of p-simplices, the sum
of chains being their symmetric differences, and we get the nice identity c+ c = 0. With
R = Z2, we will define homology over Z2, often also just called Z2-homology. Using
some slightly more abstract definitions, all of the following can be extended to define
homology over any ring R. For more on this, we refer to any textbook on algebraic
topology, e.g., the one by Hatcher [2].

3.2.2 Boundary Maps

Now that we can talk algebraically about sets of p-simplices, we can now formalize the
notion of the boundary. It should be intuitively clear what the boundary of a single
p-simplex should be: just take the (p− 1)-chain formed by its facets.

More formally, let σ = {v0, . . . , vp} be a p-simplex. Then, δp(σ) is defined by

{v1, . . . , vp}+ {v0, v2, . . . , vp}+ . . .+ {v0, . . . , vp−1} =

p∑
i=0

{v0, . . . , v̂i, . . . , vp}

In the above notation, v̂i denotes that the element vi is omitted from the set. Note that
δp(σ) is indeed a (p− 1)-chain. For some examples, see Figure 3.6.

δ2( ) =

3

21

+ + ≈
3

21

δ0( ) = 0

Figure 3.6: The boundary chains of two different simplices.

We have seen that δp is a map that sends a p-simplex to a (p − 1)-chain. Thanks
to the group structure of the chain group, we can now immediately extend this to any
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Introduction to TDA 3.2. Homology

chain. After this extension, δp defines a map from Cp(K) to Cp−1(K):

δp : Cp(K) → Cp−1(K)

c =
∑

αiσi 7→ δp(c) =
∑

αi(δp(σi))

It is easy to prove that δ is a group homomorphism, and we call it the boundary
operator homomorphism. Let us apply this definition to the following example. In a
slight abuse of notation in favor of legibility, we denote faces {a, b, c} by abc.

d

ea
b

c

δ2(abc+ bcd) = δ2(abc) + δ2(bcd)

= (ab+ bc+ ac) + (bc+ cd+ bd)

= ab+ ac+ cd+ bd

δ2(abc+ bcd+ bce) = (ab+ bc+ ac) + (bc+ cd+ bd) + (bc+ ce+ be)

= ab+ bc+ ac+ cd+ bd+ ce+ be

We can see that an edge is in the boundary of a chain of triangles exactly if it is
contained in an odd number of triangles of the chain, thanks to the fact that we use
addition in Z2.

We have already seen that cycles can be boundaries. On the flipside we have also
seen that the boundary of a simplex should have no boundary (i.e., it should be a cycle),
where the interior of the simplex fills up the cavity given by its boundary. The following
lemma generalizes this to boundaries of any chain: It states that the boundary of any
boundary is empty.

Lemma 3.20. For p > 0, δp−1 ◦ δp(c) = 0, for any p-chain c.

In the example above, δ1(δ2(abc+ bcd)) = (a+ b) + (a+ c) + (c+ d) + (b+ d) = 0.

Proof. It is enough to show this for simplices, as δp−1 ◦ δp(c) = δp−1(
∑
αi(δp(σi))) =∑

αi(δp−1 ◦ δp(σi)). For a p-simplex σ, every (p− 2)-face of σ is contained in exactly 2
(p− 1)-faces of σ, and does thus not appear in δp−1 ◦ δp(σ).
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The notions of homology we will introduce below actually generalize to any sequence
of group homomorphisms δi that fulfill Lemma 3.20 above. Each such sequence of ho-
momorphisms defines a so-called chain complex :

0 = Ck+1(K)
δk+1−→ Ck(K)

δk−→ Ck−1(K) · · ·C2(K)
δ2−→ C1(K)

δ1−→ C0(K)
δ0−→ C−1 = 0

Cp(K) Cp−1(K) Cp−2(K)

0

Figure 3.7: A schematic illustration of a part of a chain complex.

3.2.3 Cycle and Boundary Groups

As we already established intuitively, chains without boundaries are called cycles. These
are the objects potentially giving rise to holes or cavities.

Definition 3.21. A p-chain c is a p-cycle if δ(c) = 0. Zp(K) is the p-th cycle group,
consisting of all p-cycles of K.

Lemma 3.22. Zp(K) is a group.

Proof. Zp(K) = ker δp. (Recall that the kernel of a homomorphism is a subgroup of its
domain.)

So far we have only formally defined a boundary operator, but have not specified
which chains we call boundaries. Of course, as already used implicitly before, the bound-
aries are the chains that are the result of applying the boundary operator.

Definition 3.23. A p-chain c is a p-boundary if ∃c ′ ∈ Cp+1(K) such that δ(c ′) = c.
Bp(K) is the p-th boundary group, consisting of all p-boundaries of K.

Lemma 3.24. Bp(K) is a group.

Proof. Bp(K) = im δp+1.

In the following, we will often drop the “(K)” of Cp(K), Zp(K), and Bp(K) when it is
clear which simplicial complex we are speaking about.

Fact 3.25. Bp ⊆ Zp ⊆ Cp, and all of them are abelian and free.

We will not prove this statement here, but to see that Bp ⊆ Zp, recall that by
Lemma 3.20 the boundary of a boundary is empty.
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3.2.4 Homology Groups

We are now ready to formalize the notion of holes or cavities. Recall that intuitively, a
hole is a cycle that is not a boundary, that is, not filled by something higher-dimensional.
Using that all objects defined so far form abelian groups, we can phrase this in algebraic
terms using quotient groups.

Definition 3.26. The p-th homology group Hp(K) is the quotient group Zp(K)/Bp(K).

Often in the literature we write Hp(K;R) for homology over some ring R. Since we
only work with homology over Z2 in these lecture notes, we just write Hp(K) to mean
Hp(K;Z2).

Remember that the elements of a quotient group are cosets. In essence, each element
of the homology group is a coset called a homology class which contains cycles that
differ only by boundaries. The coset [c] = c+Bp is the homology class of c. We say that
c and c ′ are homologous, if [c] = [c ′], which is equivalent to the statements c ∈ c ′ + Bp
and c+ c ′ ∈ Bp. See Figure 3.8 for an example of homologous cycles, and Figure 3.9 for
an example of the first homology group of a small complex.

c

c′

Figure 3.8: c ′ and c are homologous cycles.

K : H1(K) : {0, 123, 234, 1234} ∼= Z2
21

2

3

4

Figure 3.9: The first homology group of a small complex.

Exercise 3.27. Visualize the following simplicial complex K: 0-faces {a, b, c, d, e}, 1-
faces {ab, ac, ad, bc, bd, cd, ce, de} and 2-faces {abc, abd, acd, bcd}. For the dimen-
sions 1 & 2, what are the cycle, boundary, and homology groups of K? Note: You
can express the groups by their generators. You do not need to write out all the
elements.
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Figure 3.10: A torus.

Exercise 3.28. Give an informal derivation for the homology groups of a torus (see
Figure 3.10). Can you find a space with isomorphic homology that is not homeo-
morphic to the torus?

Exercise 3.29. For a simplicial complex K, its cone CK is the complex with the same
set of vertices plus one additional vertex z, and such that for all simplices in K we
have

{a, b, c, . . .} ∈ K =⇒ {a, b, c, . . . , z} ∈ CK

(a) Visualize a cone operation. What does it intuitively do to a complex?

(b) Show that the homology of the cone CK is 0 in all dimensions d > 0, for any
K.

(c) Bonus: What would happen (intuitively and to the homology) if we extended K
in the same way as before, but with two points? (this is called the suspension
of K)

Here are some nice properties of homology groups, that will be beneficial for us, but
that we will not prove here.

Fact 3.30.

• Hp is abelian and free.

• Hp is a Z2-vector space.

Remark 3.31. If we consider homology defined over other rings, e.g. over Z instead
of Z2, the homology groups might not be free.
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Recall that our original motivation for introducing homology was to count the number
of holes. With homology as we defined it, we have the algebraic structure of a vector
space where we can add holes together. The number of distinct holes is now just the
dimension of this vector space.

Definition 3.32. βp := dimHp = dimZp − dimBp is the p-th Betti number.

In the definition above, dim denotes the dimension of a vector space as you know it
from linear algebra, i.e., dimHp is the number of elements in a basis of Hp.

Exercise 3.33. The Euler characteristic of a simplicial complex K is defined as

χ = k0 − k1 + k2 − . . .

with ki denoting the number of i-dimensional simplices in K. Convince yourself that
this is an invariant property for all triangulations of the same topological space X.

Hint: Show instead that χ = β0(K) − β1(K) + . . .. The statement then follows by
the fact that homeomorphic spaces have the same homology.

Exercise 3.34. Take any vector v = (a0, . . . , ad) ∈ Nd+1 with a0 > 0. Show that there
exists a simplicial complex Kv with that vector as its Betti numbers.

3.2.5 Singular Homology

With our definition of homology for simplicial complexes, we get for free a notion of
homology for many topological spaces, namely the triangulable ones: we can simply
triangulate them and take the homology of the triangulation. But, a topological space
may have many triangulations, and it seems like the structure of the homology groups
might differ depending on the choice of triangulation. The aim of this section is to
sketch the tools that show that the homology of a triangulable space is independent of
the chosen triangulation. The idea of singular homology is to remove the need for a fixed
triangulation by looking at all possible simplices at once.

Let X be a topological space, and let ∆p be the standard p-simplex in Rp+1. We want
to consider all possible occurrences of this simplex in X.

Definition 3.35. A singular p-simplex is a map σ : ∆p → X.

Note that in this definition we do not require σ to be injective, thus it would even
be possible to map the simplex to a single point.

We now define Cp(X) the same way as before, but now on the family of all singular
p-simplices, which in general makes the group uncountably infinite. We also define δp
as before, defining Zp(X) and Bp(X), which are now also uncountably infinite. Finally,
we again define Hp(X) = Zp(X)/Bp(X). Surprisingly, this definition agrees with the
simplicial definition of homology on any triangulation of X.
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Theorem 3.36. Let X be a topological space, K a triangulation of X. Then we have
Hp(X) ∼= Hp(K) for all p ⩾ 0.

As isomorphisms for vector spaces are an equivalence relation, we also get the desired
independence of the triangulation.

Corollary 3.37. Let K1, K2 be two distinct triangulations of X. Then, Hp(K1) ∼= Hp(K2)
for all p ⩾ 0, that is, homology is independent of the chosen triangulation.

For the remainder of these lecture notes we will only work with simplicial homol-
ogy, but we often talk about the homology of a triangulable space without specifying a
triangulation. The above corollary gives us the right to do this.

3.2.6 The 0-th homology group

The homology group that is easiest to understand is the 0-th one. Recall that the 0-
simplices of a simplicial complex K are simply its vertices. Since vertices do not have
any boundaries, every vertex is a 0-cycle. The boundary of a 1-simplex simply consists
of the two vertices which are connected by the edge. We can thus see that two vertices
v1 and v2 are homologous if there is a path from v1 to v2, and the homology class [v1] is
simply the connected component containing v1.

Observation 3.38. β0(K) is the number of connected components of K.

As a consequence, the 0-homology classes are all the formal sums of connected com-
ponents.

3.2.7 Homology of Spheres

One of the main intuitions for us when we introduced homology was that a d-sphere
should have a single d-hole and no other holes. We will now check whether our definition
captured this intuition correctly. Since we have seen in Section 3.2.5 that homology is
independent from the chosen triangulation, let us fix some triangulation of the sphere
Sd. A good candidate (due to its simplicity) is the boundary of a simplex, that is,
Sd ≃ δ(∆d+1), with the vertex set V = {v0, . . . , vd+1}.

H0(S
d): Let us first investigate H0(Sd). Since all vertices are connected, all vertices are

homologous, and H0(Sd) = ⟨[v]⟩ ∼= Z2.

Hd(S
d): Next, let us check Hd(Sd). We first compute Zd: The d-simplices are exactly

the sets σi = {v0, . . . , v̂i, . . . , vd+1}. Note that every (d−1)-simplex occurs as the bound-
ary of exactly two such d-simplices. Thus, both the zero element (empty chain) as well
as the chain c consisting of all d-simplices are part of Zd. On the other hand, no chain
c ′ ̸∈ {0, c} can be a cycle, since for such a chain there must be some d-simplex σ ∈ c ′
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neighboring some d-simplex σ ′ ̸∈ c ′. The (d − 1)-simplex that is a boundary of both σ
and σ ′ would then be part of δp(c ′). We conclude that Zd(Sd) = ⟨c⟩.

Since δ(∆d+1) is a d-dimensional simplicial complex, and thus does not contain any
(d+ 1)-simplices, no non-empty d-chain can be a boundary. We thus get that Bd(Sd) is
the group containing only 0.

We finally get Hd(Sd) = Zd/Bd = Zd ∼= Z2.

Hp(S
d): Finally, let us go to Hp(Sd), for 0 < p < d: Let c =

∑
αiσi be a p-cycle. We

aim to show that c is homologous to the 0-chain, i.e., that [c] = [0]. Equivalently, we
show that c must be a boundary.

Let σ = (vm0
, . . . , vmp

) be any p-simplex in c which does not include v0. We will
keep replacing such simplices by simplices which do contain v0, until we have no more
simplices not containing v0.

Let b be the (p+1)-simplex (v0, vm0
, . . . , vmp

). Note that b ∈ δ(∆d+1) and thus δ(b)
is a p-boundary. Also note that σ is in δ(b). Furthermore, σ is the only p-simplex in
δ(b) which does not contain v0. We now add δ(b) to c, to get c ′ := c + δ(b). Since we
added a boundary, [c] = [c ′] (i.e., c and c ′ are homologous). Furthermore, c ′ contains
one fewer p-simplex not containing v0, when compared to c.

We repeat this process until we reach a cycle c∗ in which every p-simplex contains
v0. We now claim that c∗ must be the trivial cycle: Assume c∗ contains some p-simplex
a = (v0, va1 , . . . , vap). Then, the (p−1)-simplex a ′ = (va1 , . . . , vap) is part of δ(a). But,
a ′ cannot be part of the boundary of any other p-simplex in c∗, since the only p-simplex
containing a ′ as a face while also containing v0 is a. Thus, to have an empty boundary,
we have c∗ = 0. By construction, [c] = [c∗], therefore [c] = 0 as we aimed to prove.

We have proven that every cycle is homologous to 0, and we can conclude that for
all 0 < p < d, Hp(Sd) = 0.

Since Sd is d-dimensional, we do not have any simplices of dimensions p > d, and
thus Hp(Sd) = 0 for p > d. Combining all these arguments we conclude the following
theorem:

Theorem 3.39. For any d > 0, we have

Hp(S
d) =

{
Z2 p ∈ {0, d}

0 else.

βp(S
d) =

{
1 p ∈ {0, d}

0 else.

3.2.8 Induced Homology

As usual, now that we have defined some mathematical objects (homology groups) we
are also interested in the maps between them. For simplicial complexes we have defined
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simplicial maps, and we now want to study the effect that simplicial maps have on the
homology of a space.

We first extend simplicial maps to the chain groups.

Definition 3.40. Let f : K1 → K2 be a simplicial map. This induces a chain map

f# : Cp(K1) → Cp(K2)

c =
∑

αiσi 7→ f#(c) :=
∑

αiτi, where τi =

{
f(σi) if f(σi) is p-simplex in K2
0 otherwise

Note that f(σi) is always a simplex in K2 since f is a simplicial map, but it could be a
simplex of smaller dimension. This is why we need the condition in the above definition
of τi.

The following can be shown with a bit of work:

• f# ◦ δ = δ ◦ f#

• f#(Bp(K1)) ⊆ f#(Zp(K1))

• f#(Zp(K1)) ⊆ Zp(K2), f#(Bp(K1)) ⊆ Bp(K2)
From this chain map f#, we now get a well-defined induced homomorphism between

the homology groups of K1 and K2.

Definition 3.41. Let f be a simplicial map and f# its induced chain map. This induces
a homomorphism

f∗ : Hp(K1) → Hp(K2)

[c] = c+ Bp 7→ f#(c) + Bp(K2) = [f#(c)].

Fact 3.42. If Hp(K1) and Hp(K2) are vector spaces (as they are in e.g. Z2-homology,
which is what we are using), then f∗ is a linear map.

We also get the following functorial property, which we will not prove.

Fact 3.43. For two simplicial maps f : X→ Y, g : Y → Z, we have (g ◦ f)∗ = g∗ ◦ f∗.
Let us compute the induced homomorphism of a small example:

da

c

da b

c

K1 K2

b

We consider the inclusion map f : K1 ↪→ K2.

H1(K1) = {0, [abc], [bcd], [abdc]} ∼= Z22

f∗(0) = 0, f∗([abc]) = [abc]

f∗([bcd]) = 0, f∗([abdc]) = [abc]
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Exercise 3.44. Let

K1 = {∅, a, b, c, d, e, ab, ac, bc, bd, cd, ce, de, abc}

and

K2 = {∅, w, x, y, z,wx,wy, xy, xz, yz}.

Consider the map f : K1 → K2 induced by the vertex map

a 7→ y, b 7→ x, c 7→ y, d 7→ z, e 7→ z.

You can verify easily that f is simplicial. Compute f∗ : Hp(K1) → Hp(K2) for
0 ⩽ p ⩽ 2.

Exercise 3.45. Which of the following four statements is true for every simplicial
map f?
“If f is {injective, surjective}, then f∗ is {injective, surjective}.”

The following fact has some very powerful consequences, as we will see.

Fact 3.46. If f, g : K1 → K2 are contiguous, f∗ = g∗.

Note that the definition of induced homology extends from simplicial maps to maps
between any topological spaces. We will not state the exact definitions, but the following
fact is the continuous analogue (remember that two simplicial maps being contiguous is
analogous to two maps being homotopic) of Fact 3.46.

Fact 3.47. If f, g : X→ Y are homotopic, f∗ = g∗.

Thanks to this fact we get the following corollary, which shows that homology is
indeed an invariant under homeomorphisms, and even under homotopy equivalence.
This also gives us the option to compute the homology of a space by computing the
homology of a potentially simpler homotopy equivalent space.

Corollary 3.48. If f : X → Y is a homotopy equivalence (i.e., there exists g : Y → X

such that f ◦ g is homotopic to idY and g ◦ f is homotopic to idX), then f∗ is an
isomorphism.

Proof. Thanks to Fact 3.43 we have (g ◦ f)∗ = g∗ ◦ f∗. By Fact 3.47, (g ◦ f)∗ = (idX)∗,
which is an isomorphism. Since we thus know that g∗◦f∗ is an isomorphism, we know that
f∗ must be injective and g∗ must be surjective. By a symmetric argument considering
f ◦ g we also get that f∗ is surjective and g∗ is injective, and thus both f∗ and g∗ are
isomorphisms.

Exercise 3.49.

Consider the space you get when you glue together two points of a torus. What is
the homology of this space?
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Consider the space you get when you simultaneously pierce a balloon at n distinct
locations. What is the homology of this space?

Exercise 3.50. Let f, g : S1 → S1 be continuous maps such that f(−x) = f(x) and
g(−x) = −g(x) for all x ∈ S1.

a) Convince yourself that f∗ : H1(S
1) → H1(S

1) is trivial (maps everything to 0)
and that g∗ is an isomorphism.

b) Show that f and g are not homotopic.

c) Show that there is no map h : S2 → S1 such that h(−x) = −h(x).

d) Conclude that every map ϕ : S2 → R
2 with ϕ(−x) = −ϕ(x) has a zero.

The statement you have proven in d) is equivalent to the 2-dimensional case of
the famous Borsuk-Ulam theorem, which implies statements such as “at any time,
there are two antipodal points on the earth with both the same temperature and
atmospheric pressure”.

3.2.9 Application: Brouwer Fixed Point Theorem

In this section we finally collect the fruits of our hard work by using homology to give a
relatively short proof of the famous fixed point theorem by Brouwer. Here, Bd denotes
the unit ball of dimension d.

Theorem 3.51 (Brouwer fixed point theorem). Let f : Bd → Bd be continuous. Then, f
has a fixed point, that is, ∃x ∈ Bd such that f(x) = x.

This theorem has many fascinating implications:

• Take two sheets of paper lying on top of each other. Crumple the top sheet and
set it back onto the other sheet. No matter how you crumpled the sheet, at least
one point of the crumpled sheet lies exactly above its corresponding point in the
bottom sheet.

• If you open a map of Switzerland in Switzerland, there is at least one point on the
map which is at its exact position.2

• If you take a cup of liquid and stir or slosh it, at least one atom ends up at its
original position (but if you shake you might break continuity).

• The theorem also has many applications in mathematics and computer science,
such as in fair divisions or for proving existence of Nash equilibria.

2The theorem only applies when ignoring the Italian and German exclaves of Campione d’Italia and
Büsingen am Hochrhein.
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To prove Theorem 3.51, we first introduce the following definition and a helper lemma,
which we only prove after proving Theorem 3.51 itself.

Definition 3.52. A map r : X→ A ⊆ X is a retraction if r(a) = a, ∀a ∈ A.

Lemma 3.53. There is no retraction r : Bd → Sd−1.

Proof of Theorem 3.51. We prove the theorem by contradiction. For an illustration
of the argument see Figure 3.11. Assume f : Bd → Bd has no fixed point. For each
x, consider the ray

−−−→
f(x)x and let r(x) be the intersection of this ray with Sd−1. Then,

r : Bd → Sd−1 is continuous (which we do not prove here) and r(s) = s ∀s ∈ Sd−1, since
no matter where f(s) lies,

−−→
f(s)s first intersects Sd−1 in s. Thus, r is a retraction, which

does not exist by Lemma 3.53.

x
r(x)

f(x)

Figure 3.11: If f has no fixed point, we get a retraction to the boundary.

It remains to prove the helper lemma.

Proof of Lemma 3.53. Consider the inclusion map i : Sd−1 ↪→ Bd, and a retraction
r : Bd → Sd−1. By definition, we have r ◦ i = id . Let us look at the induced maps
of r and i in the (d − 1)-th homology of Sd−1 and Bd. Recall that Hd−1(Sd−1) ∼= Z2
and Hd−1(Bd) ∼= 0. We thus view i∗ as a homomorphism from Z2 to 0, and r∗ as a
homomorphism from 0 to Z2. But since r ◦ i = id, we also have r∗ ◦ i∗ = id. We can
combine this to reach a contradiction:

1 = id(1) = (r∗ ◦ i∗)(1) = r∗(i∗(1)) = r∗(0) = 0

Thus, either i or r cannot exist, but since i exists, r cannot.
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Questions

5. What is a simplicial complex? Define geometric and abstract simplicial com-
plexes and state and prove the realization theorem (Theorem 3.5).

6. What are simplicial and contiguous maps? State the definitions and discuss the
connection to their counterparts in continuous topology.

7. Is every contractible simplicial complex collapsible? Define the notion of col-
lapsibility and describe Bing’s house with two rooms.

8. What is simplicial homology? Explain the intuition and give the formal defini-
tions of chains, boundaries and cycles.

9. Why is the homology of a triangulable space independent of the chosen trian-
gulation? Explain the idea of singular homology.

10. What are the homology groups of a sphere? State and prove the corresponding
theorem (Theorem 3.39).

11. How does a simplicial map between two simplicial complexes induce maps
between their homology groups? Define induced homomorphisms.

12. What is the Brouwer fixed point theorem? State, illustrate and prove the
Brouwer fixed point theorem (Theorem 3.51).
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