
Chapter 4

Persistence

In the previous chapter, we have studied the homology of fixed simplicial complexes. In
this chapter, we will look at simplicial complexes that grow over time. Let us start with
a small example. Consider the following process of building up a triangle abc. At time
t1, we add the vertices a and b together with the edge ab. This gives birth to a single
connected component. At time t2 we add the vertex c, giving birth to a second connected
component. At time t3 we add the edge ac, connecting the two components. We can
interpret this as the younger of the components being absorbed by the older component.
In more crude language, we say that the younger component dies. At time t4 we add the
final edge bc, which gives birth to a hole, that is, an element of the homology group H1.
Finally, at time t5 we add the interior of the triangle, killing the hole born at t4. We
can summarize this process as follows: we have a connected component that was born
at t1 and survived the entire process, and a connected component that was born at t2
that died again at t3. Finally, we have a hole born at t4 dying at t5. Capturing this
information of holes with their birth and death is the goal of persistent homology.

Persistent homology can be applied to data analysis by defining (in a way that we will
see soon) a process to build up a simplicial complex from point cloud data and computing
the birth and death times of holes. Subtracting the birth time from the death time we
get the lifespan of a hole; the underlying idea is that holes with a short lifetime are a
byproduct of the process (noise), whereas holes with a long lifespan convey information
about the shape of the underlying data.

4.1 Filtrations

We start by a mathematical formulation of the process of growing a simplicial complex
or, more general, a topological space. A filtration is a nested sequence of subspaces

F : X0 ⊆ X1 ⊆ X2 ⊆ . . . ⊆ Xn = X.

For each i ⩽ j, we have the inclusion map ιi,j : Xi ↪→ Xj. Given these functions ι,
we get induced maps in homology: hi,jp = ι∗ : Hp(Xi) → Hp(Xj). Filtrations are a very

47



Chapter 4. Persistence Introduction to TDA

general object that appear naturally in many settings. Let us look at some important
examples of filtrations.

• Given a function f : X → R, we can define the (uncountably infinite) sublevel set
filtration Xa = f−1(−∞, a].

• A simplicial filtration is a nested sequence of subcomplexes

F : K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.

We call a simplicial filtration simplex-wise, if Ki \ Ki−1 is a single simplex (or
empty).

• We call a function f : K → R simplex-wise monotone if for every σ ⊆ τ we have
f(σ) ⩽ f(τ). A simplex-wise monotone function guarantees us that the sublevel set
filtration by f gives a proper simplicial filtration. Note that it does not necessarily
guarantee us that the sublevel set filtration is simplex-wise (e.g., consider a function
f that is not injective).

• We can also define a simplicial filtration by ordering our vertices v0, v1, . . . , vn.
Then, let Ki be the simplicial complex induced by the vertices v0, . . . , vi. We call
the simplices Ki \Ki−1 added when adding vi the lower star of vi. Thus, this type
of filtration is also called the lower star filtration.

• Given some data points in Rd, we can define a filtration based on our intuition of
growing balls : We consider the nerve of all balls B(p, r); with growing r we get
more and more faces in this nerve. We will later formalize this into the so-called
Čech complex.

4.2 Persistent Homology

As we have seen, from a filtration X0 ⊆ X1 ⊆ . . . ⊆ Xn we get a sequence of homology
groups with homomorphisms between them:

Hp(F) : Hp(X0) → Hp(X1) → Hp(X2) → . . .→ Hp(Xn).

Such an object is called a persistence module. Given a persistence module, we can now
define groups that capture all the holes that are alive during a certain period.

Definition 4.1. The p-th persistent homology group Hi,jp is defined by

Hi,jp := imhi,jp = Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)).

This definition characterizes the cycles that that are present already in Ki and that
are not boundaries even in Kj.

48



Introduction to TDA 4.2. Persistent Homology

· · ·

Hp(Ki−1) Hp(Ki) Hp(Kj−1) Hp(Kj)

[c]

Figure 4.1: An illustration of a class [c] being born at Ki and dying entering Kj.

Definition 4.2. The p-th persistent Betti numbers βi,jp are the dimensions of the p-th
persistent homology groups: βi,jp = dimHi,jp .

Exercise 4.3. Let p ⩾ 1. For every n ⩾ 1, construct a filtration X1 ⊆ X2 ⊆ . . . ⊆ Xn
such that

• Hp(Xk) ̸= 0 for all k ∈ {1, . . . , n} and

• Hi,jp = 0 for all i < j.

We say that a p-homology class [c] (a p-hole) is born at Ki if [c] ∈ Hp(Ki) but
[c] ̸∈ Hi−1,ip . Similarly, [c] dies entering Kj, if [c] ̸= 0 in Hp(Kj−1) but hj−1,jp ([c]) = 0.

It is not always obvious which homology class dies. Consider the following filtration:
X1 consists of two points a and b, and in X2 the two points are connected by an edge.
Let us look at H0, that is, the connected components. We have that H0(X1) ≃ Z22, with
the natural basis {[a], [b]}. On the other hand, in X2 there is only a single connected
component, and [a] = [b]. So a homology class is dying, but both our basis elements [a]
and [b] survive. What is happening?

It turns out that we were not careful with our choice of basis: H0(X1) can also be
viewed as being generated by [a] and [a+b], and the class [a+b] indeed dies going into
X2. In general, if two homology classes merge, they both do not die, but their sum does.
There is a consistent choice of basis which allows us to only look at persistent homology
in terms of basis elements, but we do not go into this at this point.

If we have a simplex-wise filtration, we can circumvent the above issue by sorting
homology classes by the time where they were born (recall the solution to Exercise 3.33
to see why this gives a total order). When two classes merge, we just say the “younger
one” dies. This can be seen as adapting the considered basis along the way.

Persistence pairings are another way around this issue. We add some final complex
Kn+1 which has trivial homology (i.e., by adding all simplices that are not yet present).
Then, we aim to figure out how many holes get born at Ki and die entering Kj. For this,

49



Chapter 4. Persistence Introduction to TDA

t1 t2 t3 t4 t5

H0

H1

t1 t2 t3 t4 t5

∞

t5

t4

t3

t2

t1

t1 t2 t3 t4 t5

∞

t5

t4

t3

t2

t1
Dgm0(F) Dgm1(F)

F :

Figure 4.2: An example of a filtration with the corresponding barcodes and persistence
diagrams.

we define

µi,jp := (βi,j−1p − βi,jp ) − (βi−1,j−1p − βi−1,jp ), for i < j ⩽ n+ 1.

Here, the content of the left parenthesis denotes the number of holes born at or before
Ki, which die entering Kj. Conversely, the right parenthesis denotes the number of holes
born strictly before Ki, and die entering Kj. Thus, subtracting the two, gives the number
of holes born exactly at Ki and die entering Kj. Note that this conveys the information
that we are interested in, but does not require choosing any basis.

The persistence diagram Dgmp(F) is a birth-death diagram which contains a point
for every pair i, j for which µi,jp > 0. If we give each Ki a timestamp ai, the point is drawn
at the coordinates (ai, aj). We give each point multiplicity µi,jp . On the diagonal we add
points with infinite multiplicity, for some technical reasons that will become apparent
later. We can also represent the same information by barcodes : For every i, j, we draw
µi,jp intervals [ai, aj]. This is then called the p-th persistence barcode.

Exercise 4.4. Consider the simplex-wise filtration induced by the order σ1, . . . , σN on

50



Introduction to TDA 4.3. Algorithms for Persistent Homology

the simplices of a complex K. When does the order

σ1, . . . , σk−1, σk+1, σk, σk+2, . . . , σN

induce a simplex-wise filtration too? When it does, describe the relation between
the corresponding persistence diagrams.

Exercise 4.5. Give two filtrations X1 ⊆ . . . ⊆ Xn and Y1 ⊆ . . . ⊆ Yn that have the
same persistence diagrams but for which for any i ∈ {1, . . . , n}, Xi is not homotopy-
equivalent to Yi.

4.3 Algorithms for Persistent Homology

So far we have considered homology and persistent homology only on a mathematical
level. However, for practical applications we are interested in actually computing homo-
logical information. In this section we discuss how we can compute persistence pairings
given simplicial filtrations. This will of course also allow us to compute persistence
diagrams and persistence barcodes.

4.3.1 Persistence Pairing Algorithm

The first algorithm we consider is the so-called persistence pairing algorithm. It only
works on simplex-wise filtrations, we thus restrict our attention to such filtrations. In
any time step j, we add a single simplex σj := Kj \ Kj−1. Let p be its dimension. There
are only two things that can happen to the homology when adding σj: Either, a new
non-boundary p-cycle c (i.e., a hole) is born, or a (p−1)-cycle becomes a boundary (i.e.,
a hole dies). In the first case we say that σj is a creator. Otherwise, we say that σj
is a destructor. The fact that in every step exactly one of the two events happens is a
consequence of the Euler characteristic, as discussed in Exercise 3.33.

When a new simplex σj destroys a hole, this corresponds to an interval of the persis-
tence barcode ending. The beginning of that interval is at the time step when this hole
was born, which corresponds to a unique simplex (recall, we are considering simplex-wise
filtrations only). This unique simplex must be a creator, since when it was inserted a
hole was born. The idea of the persistence pairing algorithm is to form pairings between
destructors and creators. To do this, the algorithm assumes the newly added simplex σj
to be a destructor, and tries to find the corresponding unpaired creator using a simple
heuristic. If no such creator can be found by the procedure, we know that σj must
actually be a creator itself.

The heuristic is quite simple to describe. We have to look for an unpaired creator
only within a cycle c that becomes a boundary due to the insertion of σj. Among this
cycle c, we wish to pair σj with the youngest unpaired creator. Any such cycle c must
be homologous to δσj, which is the simplest candidate for such a cycle c. This is thus
where the search begins. We first try to pair σj with the youngest (p − 1)-simplex ρ of

51



Chapter 4. Persistence Introduction to TDA

its boundary. If ρ is unpaired, we pair it to σj and we are done. Otherwise, ρ is already
paired with some (p-simplex) τ. In this case we replace c by c+ δτ. This is now a new
candidate cycle, in which we can try pairing σj to the youngest simplex. We repeat this
process until we found an unpaired creator we can pair σj to, or until we cannot continue
because c = 0. In this case we label σj as a new creator. At the end of the algorithm
(after processing all steps of the filtration), all remaining unpaired creators correspond
to holes present at the last step of the filtration, and we pair them with the element ∞.

We refrain from giving a complete proof of this algorithm’s correctness. Such a proof
can be found in [1], however the algorithm presented there is slightly more complex and
more efficient. We would only like to note that when we label a simplex a creator that
this is correct to do so: If we reach c = 0 we know that the boundary of σj is homologous
to 0 (we obtained 0 by adding boundaries to δσj). Thus, σj cannot be a destructor. We
can thus safely label σj as a new creator.

We summarize this algorithm in the following pseudocode:

Algorithm 1: The persistence pairing algorithm.
Input: A simplex-wise filtration of K given by an order of simplices σ1, . . . , σN
for j = 1 to n do
c := δσj;
while c ̸= 0 do
i := largest integer such that σi ∈ c and σi is creator;
ρ := σi;
if ρ is unpaired then

Label σj as destructor and pair ρ and σj;
c := 0

else
τ := simplex ρ is paired to;
c := c+ δτ;

end
end
if σj has not been labelled a destructor then

Label σj a constructor;
end

end
Pair all unpaired constructors with ∞;

Exercise 4.6. Let G be a weighted connected graph, where all edge weights are pairwise
distinct. Consider a filtration that first inserts all vertices (in some arbitrary order)
and then inserts the edges one by one, ordered by increasing weight. What is the
set of destructors?

52



Introduction to TDA 4.3. Algorithms for Persistent Homology

4.3.2 Matrix Reduction Algorithm

In practice, a different algorithm is used, the Matrix Reduction Algorithm. This algo-
rithm implements the same intuition as the persistence pairing algorithm. It has a few
advantages: First off, it is more efficient (it avoids the need to add the same boundaries
multiple times, similarly to the version of the persistence pairing algorithm provided
in [1]). Second, it is phrased in the language of matrices, which allows us to implement
it more efficiently using matrix-multiplication techniques. Lastly, the way we describe it
in the following it also works with non-simplex-wise filtrations.

In the matrix reduction algorithm, we first find a total order on our simplices. If
the input filtration is simplex-wise, this is just the insertion order. Otherwise, we order
the simplices primarily by insertion order, and within each set of simultaneously added
simplices, we order the simplices by increasing dimension, and then lexicographically.
Then, we construct an N×N matrix, which is the so-called boundary matrix. Each row
and column is labelled by a simplex, ordered by the order we defined above. We then
insert a 1 at row σ and column τ, if σ is part of the boundary of τ.

We now modify this boundary matrix to obtain the reduced boundary matrix, from
which the persistence pairings can then be read off. We process the columns from left
to right. For each column c, we look at the lowest 1 in the column. We call this 1 the
pivot element of the column. If there is a column c ′ < c to the left that also has a pivot
element in the same row, we add c ′ to c (in Z2). This is repeated until no such column
c ′ < c exists.

After processing all the columns, the matrix is in a reduced form: For every row, there
is at most one column whose lowest 1 (its pivot element) lies in that row. From this we
can now read the persistence pairings: Empty columns correspond to creators (births).
To find the death of a creator, look at its corresponding row, and search for a column
that has a pivot element in that row. This column is the destructor corresponding to
the creator. If there is no such column, this creator never dies, i.e., is unpaired or paired
with ∞.

We again summarize this algorithm in the pseudocode below. Let us now analyze at
the runtime of this algorithm. For each column (O(N)), we might have to add O(N)
times a column, and each addition takes O(N). So, by this very rough analysis we
have a runtime of O(N3). But, since the reduction process is very similar to Gaussian
elimination, we can actually perform the reduction using techniques that yield a runtime
of O(Nω), where ω is the matrix-multiplication exponent. However, in practice this is
not very useful since efficient matrix-multiplication algorithms are very complex and have
large constants, while the naive implementation runs in essentially O(N) time anyways
since the involved matrices are so sparse.

Exercise 4.7. Consider the following simplicial complex, and the simplex-wise filtra-
tion which first inserts the vertices in the order a, b, c, d, e, and the rest of the
simplices as specified by the numbering in Figure 4.3.

Execute both the persistence pairing algorithm and matrix reduction algorithm
on this filtration. What are the similarities and differences in the algorithms? To

53



Chapter 4. Persistence Introduction to TDA

Algorithm 2: The matrix reduction algorithm.
Input: A filtration of K.
Find an ordering σ1, . . . , σN corresponding to a simplex-wise filtration of K
consistent with the given filtration;
M := 0N×N;
for 1 ⩽ i, j ⩽ N do

if σi ∈ δσj then
Mij := 1;

end
end
for j = 1 to n do
ℓ := max({−1} ∪ {i |Mij = 1});
while ℓ ̸= −1 and ∃j ′ < j such that ℓ = max({−1} ∪ {i |Mij ′ = 1}) do
M·j :=M·j +M·j ′;
ℓ := max({−1} ∪ {i |Mij = 1});

end
end
for j = 1 to n do

if M·j = 0
N then

Label σj a constructor;
for j ′ = 1 to n do

if j = max({−1} ∪ {i |Mij ′ = 1}) then
Pair σj to σj ′;
Label σj ′ a destructor;

end
end

end
end
Pair all unpaired constructors with ∞;

54



Introduction to TDA 4.3. Algorithms for Persistent Homology

better see what happens, label the columns in the matrix by the sum of columns
they currently represent.

Represent the results you obtained by a persistence diagram, and also by the
persistence barcodes.

a b

cd

e 6

7

8

910

11

12
13

14

Figure 4.3: The filtration for Exercise 4.7.

Exercise 4.8. A Union-Find data structure is a data structure that maintains disjoint
sets dynamically. Given a ground set X, such a data structure maintains a family
S of disjoint subsets of X, where each subset is represented by the smallest element
contained in it. It supports three operations: MakeSet(x) creates a new set {x}.
FindSet(x) returns the representative (minimum) of the set in S which contains x
(or “no” if x is not contained in any set). Union(x, y) merges the sets containing x
and y into a single one. All of these operations can be implemented in amortized
Θ(α(n)) time, where α is the extremely slowly growing inverse Ackermann function
and can be considered a constant for any real world application.

Consider a simplicial complex K with its vertices ordered v0, . . . , vn, and consider
its lower star filtration. Find an algorithm to compute the 0-dimensional persistence
diagram (i.e., the persistence pairings) of K which makes use of a Union-Find data
structure. How many Union-Find operations do you need to perform?

Questions

13. What is a filtration? State the definition and describe different ways how filtra-
tions appear in topology and data analysis.

14. What is persistent homology? State the formal definitions and give examples.

15. How can persistent homology be computed? Discuss the two algorithms de-
scribed in Section 4.3.

References

[1] Tamal Krishna Dey and Yusu Wang, Computational topology for data analysis,
Cambridge University Press, 2022.

55


