
Chapter 5

Simplicial Complexes on Point Clouds

In general, the data we wish to analyze will not come in the form of a simplicial filtration,
so in order to use persistent homology we need to transform our data into one. Ideally,
the way we do this should retain the underlying shape of the data we want to analyze.
In this section we discuss several ways of constructing simplicial complexes from point
cloud data, and more generally, from finite metric spaces (i.e., a finite set of data points
with given pairwise distances).

5.1 Čech and Vietoris-Rips complexes

Definition 5.1. Given a metric space (M,d), a finite point set P ⊆ M, and a real
number radius r > 0, the Čech complex Cr(P) is defined as the nerve of the set of
balls B(p, r) = {x ∈M | d(p, x) ⩽ r} for all p ∈ P.

The Čech complex has the nice property that (at least for some metric spaces M
including Euclidean space Rd) by the Nerve theorem, it is homotopy equivalent to the
union of the balls B(p, r). In particular, for nice radii, it will capture the underlying
shape. Sadly, checking whether a large number of balls have a common intersection can
be computationally expensive. Further, the definition requires that the data points are
embedded in a metric space. These two issues motivate the next definition.

Definition 5.2. Given a finite metric space (P, d) and a real number radius r > 0,
the Vietoris-Rips complex VRr(P) is defined as the simplicial complex containing a
simplex σ if and only if d(p, q) ⩽ 2r for every pair p, q ∈ σ.

Clearly, for finite subsets of metric spaces, by definition, the Čech complex and the
Vietoris-Rips complex for the same radius and the same point set have the same set
of 1-simplices (the same 1-skeleton). While the Čech complex then contains additional
information about the common intersections of balls, the Vietoris-Rips complex is simply
the clique complex of this 1-skeleton. This makes the Vietoris-Rips complex easier to
compute. Furthermore, we make the following simple observation, showing that the
Vietoris-Rips complex still approximately captures shapes in the data:
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Observation 5.3. Cr(P) ⊆ VR
r(P) ⊆ C

2r(P).

Exercise 5.4. Prove Observation 5.3.

Exercise 5.5. Find a point set P ⊂ R
2 and a radius r such that its Vietoris-Rips

complex has non-trivial 2-homology, i.e., such that H2(VRr(P)) ̸∼= 0.
Furthermore, is there a dimension k such that Hk ′(VRr(Q)) = 0 for all k ′ ⩾ k, all
r > 0, and all point sets Q ⊂ R

2?

5.2 Delaunay and Alpha complexes

Recall that computing persistent homology takes O(N3) time, where N is the size of
the simplicial complex in the filtration. For large enough radii, both the Čech and the
Vietoris-Rips complex become complete, and thus contain 2n simplices. Computing
persistent homology using those complexes is therefore computationally very expensive,
which is why in many applications we would like to have sparser complexes. For data
in Rd we can look at the so-called Delaunay triangulation, which only has complexity
O(n⌈d/2⌉).

Definition 5.6. Given a finite point set P ⊂ R
d, a Delaunay simplex is a geometric

simplex whose vertices are in P and lie on the boundary of a ball whose interior
contains no points of P.

A Delaunay triangulation Del(P) of P is a geometric simplicial complex with the
vertex set P where every simplex is a Delaunay simplex and whose underlying space
covers the convex hull of P.

Given a finite point set P ⊂ R
d, the extended Delaunay complex is the simplicial

complex where for every face σ, for d ′ ⩽ d, every d ′-face of σ is a Delaunay simplex.

It is a well-known fact that for a point set in general position (no d+ 2 points lie on
a common sphere), there is a unique Delaunay triangulation. Furthermore, in this case
the extended Delaunay complex and this unique Delaunay triangulation coincide.

Definition 5.7. Given a finite point set P ⊂ R
d, the Voronoi diagram is the tessellation

of Rd into the Voronoi cells

Vp = {x ∈ Rd | d(x, p) ⩽ d(x, q)∀q ∈ P}

for all p ∈ P.

Fact 5.8. The nerve of the Voronoi cells of P is the extended Delaunay complex of P.

Exercise 5.9. Convince yourself that for a point set in R
2, the nerve of the Voronoi

diagram is the extended Delaunay complex. Furthermore, convince yourself that if
the points are in general position (there are no three points that are collinear, and
no four points that are cocircular), then there is a unique Delaunay triangulation.
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Based on the Delaunay triangulation, we define the Alpha complex by parameterizing
using a radius as follows:

Definition 5.10. Given a finite point set P ⊂ R
d in general position as well as a real

number radius r > 0, the Alpha complex Delr(P) consists of all simplices σ ∈ Del(P)
for which the circumscribing ball of σ has radius at most r.

The following fact provides us with an alternative definition of the Alpha complex:

Fact 5.11. The Alpha complex Delr(P) is the nerve of the sets B(p, r) ∩ Vp for all
p ∈ P.

Since the Alpha complex is a subset of the Delaunay triangulation (and for large
enough radius is equal to the Delaunay triangulation), it also has complexity O(n⌈d/2⌉).
Further, the above fact together with the Nerve theorem implies that the Alpha complex
Delr(P) is homotopy equivalent to the Čech complex Cr(P).

Exercise 5.12. Is the following true or false? Consider a point set P ⊂ R
2 in gen-

eral position and a radius r > 0. Then the Alpha complex (with radius r) is the
intersection of the Čech complex (with radius r) with the Delaunay triangulation.

5.3 Subsample Complexes

For many applications, the Alpha complex is still too large. It is further expensive to
compute, as computing a Delaunay triangulation in Rd takes O(n⌈d/2⌉) time. Sparser
complexes can be constructed by looking at subsamples of the data, and relating the
rest of the data to these subsamples. In the following, we will discuss two examples of
complexes based on this idea.

Definition 5.13. Given a finite point set Q and a point set P ⊃ Q in some metric space,
we say that a simplex σ ⊆ Q is weakly witnessed by x ∈ P \ Q, if d(q, x) ⩽ d(p, x)
for every q ∈ σ and p ∈ Q \ σ.

Note that the set of weakly witnessed simplices is not downwards closed. We thus
define a simplicial complex by requiring that all faces are weakly witnessed:

Definition 5.14. The Witness complex W(Q,P) is the collection of simplices on Q for
which every face is weakly witnessed by some point in P \Q.

Note that if we take the metric space Rd and we let P be the whole Rd, thenW(Q,P) =
Del(Q), and by definition we thus get in general that W(Q,P) ⊆ Del(Q).

To arrive at a filtration, we again have to introduce a parameter r > 0:

Definition 5.15. Given a finite point set Q and a point set P ⊃ Q in some metric space
as well as a real number radius r > 0, the parameterized Witness complex Wr(Q,P)
is defined as follows:
An edge pq is in Wr(Q,P) if it is weakly witnessed by x ∈ P \Q and d(p, x) ⩽ r and
d(q, x) ⩽ r. A simplex σ is in W

r(Q,P) if all its edges are.
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Note that from this definition it is not guaranteed that the parameterized Witness
complex is a subcomplex of the Witness complex.

The idea of the parameterized Witness complex is that it should approximate the
Vietoris-Rips complex on P. There are theoretical guarantees about this approximation
for manifolds of dimension at most 2, but the parameterized witness complex may fail
to capture the topology of manifolds in dimension 3 and above.

Let us now consider a second subsample complex, the graph induced complex.

Definition 5.16. Given two finite point sets Q,P in R
d, as well as a graph G(P) with

vertices in P, we define v : P → Q by sending each point in P to its closest point in
Q. The graph induced complex G(Q,G(P)) contains a simplex σ = {q0, . . . , qk} ⊂ Q

if and only if there is a clique {p0, . . . , pk} in G(P) for which v(pi) = qi.

We again parameterize this:

Definition 5.17. Let Gr(P) be the graph on P where pq is an edge if and only if d(p, q) ⩽
2r. The parameterized graph induced complex Gr(Q,P) is defined as G(Q,Gr(P)).

This complex again has theoretical guarantees of approximating the Vietoris-Rips
complex on P ∪Q.

Exercise 5.18. Let P,Q be point sets and G(P) a graph with P as its vertex set. Let
v : P → Q be the map sending each point of P to its closest point of Q (assume
that this closest point is always unique). Let C be the clique complex of G(P) (the
complex which includes a simplex iff its corresponding vertices in G(P) form a
clique).

Show that v extends to a simplicial map v̄ : C→ G(Q,G(P)). Also show that any
simplicial complex K with V(K) = Q for which v has a simplicial extension must
contain G(Q,G(P)).

Questions

16. What are the Čech and Vietoris-Rips complexes? Give the definitions, discuss
their size and theoretical guarantees, and how they are related.

17. What are the Delaunay and Alpha complexes? Give the definitions, discuss
their size and theoretical guarantees, and how they are related.

18. What is the Witness complex? State the Definition and describe how it relates
to the non-sparse complexes.

19. What is the Graph induced complex? State the Definition and describe how it
relates to the non-sparse complexes.
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