
Chapter 6

Distances and Stability

6.1 Distance Metrics on Persistence Diagrams

As we have seen in the previous sections, persistent homology of simplicial filtrations,
for example in the form of persistence diagrams or persistence barcodes, can give us a
lot of insight into a given point cloud. However, so far we have always been analyzing
this information manually. In this section we will show how this can be done on a
more mathematical level, by defining some distance metrics that can be used to compare
different persistence diagrams, and thus to assess the similarity of point clouds.

6.1.1 Bottleneck Distance

Let F,G be two filtrations giving rise to persistence modules Hp(F), Hp(G), and let
Dgmp(F) and Dgmp(G) be their corresponding persistence diagrams. How can we now
compare these two filtrations F and G by using only the information stored in these
diagrams?

The general idea of the bottleneck distance is to find a matching between the points of
the two persistence diagrams, i.e., we consider bijections between the points of Dgmp(F)
and those of Dgmp(G). Since we can only find bijections between sets of the same
cardinality, we need the two diagrams to have the same number of points. Recall that
the way we defined it, a persistence diagram includes every possible point on the diagonal
with infinite multiplicity. This peculiar definition now finally pays off; since both sets
of points have the same (infinite) cardinality, and bijections between these sets are thus
well-defined.

We do not want to consider any arbitrary bijection, but only the best possible. To
measure the “quality” or “distance” of such a bijection, we use the L∞-norm:

Definition 6.1. Let x = (x1, x2), y = (y1, y2) be two points in R
2. Then,

||x− y||∞ := max(|x1 − y1|, |x2 − y2|),

where we say that ∞ −∞ = 0 for points with coordinates that are ∞ (i.e., points
in persistence diagrams that correspond to holes that did not die).
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Introduction to TDA 6.1. Distance Metrics on Persistence Diagrams

Definition 6.2. Let Π = {π : Dgmp(F) → Dgmp(G) | π is bijective} be the set of all
bijections between Dgmp(F) and Dgmp(G). Then, the Bottleneck distance is defined
as

db(Dgmp(F), Dgmp(G)) := inf
π∈Π

sup
x∈Dgmp(F)

||x− π(x)||∞.
The Bottleneck distance thus minimizes the maximum L∞-norm of any pairing, over

all pairings of points.

Figure 6.1: An illustration of the idea of bottleneck distance.

Observation 6.3. The Bottleneck distance is a metric on the space of persistence dia-
grams with finitely many off-diagonal points.

Proof. We check the three properties of metrics:

1. db(X, Y) = 0 if and only if X = Y: This is simple to see, since if X = Y, every point
can be matched to its copy, and if X ̸= Y, there exists some point p ∈ X \ Y ∪ Y \X
which must be matched to some point with positive L∞-distance to p.

2. db(X, Y) = db(Y, X): This is clear by definition.

3. db(X, Y) ⩽ db(X,Z) + db(Z, Y): Take a bijection π1 witnessing1 db(X,Z) and
a bijection π2 witnessing db(Z, Y), and concatenate the two: π := π2 ◦ π1 is a
bijection X→ Y where for every x ∈ X we can use the triangle equality of || · ||∞ to
bound ||x− π(x)||∞ ⩽ ||x− π1(x)||∞ + ||π1(x) − π2(π1(x))||∞.

1Note that since db is an infimum and not a minimum, there may not be π1 and π2 witnessing db. In
this case, the same argument can be applied to the converging sequences of bijections witnessing db.
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Exercise 6.4. Give an algorithm to compute the Bottleneck distance between two per-
sistence diagrams. Your algorithm should be polynomial in n, where n is the total
number of off-diagonal points in the two persistence diagrams.

The Bottleneck distance can be used to compare any two filtrations, of possibly wildly
different spaces. What if we consider two filtrations of the same simplicial complex?
Recall that simplex-wise monotone functions f, g : K→ R give rise to simplicial sublevel
set filtrations Ff,Fg. While these two filtrations can be compared using the Bottleneck
distance, we can also define a metric that directly compares the two functions f, g:

Definition 6.5 (infinity norm). Let f, g : X → R. Then, the infinity norm of f − g is
defined as

||f− g||∞ := sup
x∈X

|f(x) − g(x)|.

The following theorem tells us that this infinity norm and the Bottleneck distance
are closely related:

Theorem 6.6 (Stability for simplicial filtrations). Let f, g : K→ R be simplex-wise mono-
tone functions. Then, ∀p ⩾ 0 we have db(Dgmp(Ff), Dgmp(Fg)) ⩽ ||f− g||∞.

Proof. We consider the linear interpolation ft := (1 − t)f + tg for t ∈ [0, 1] between f
and g. Note that f0 = f, f1 = g.

We first show that each ft is a simplex-wise monotone function: Let σ ⊆ τ. Since f
and g are monotone, we have f(σ) ⩽ f(τ) and g(σ) ⩽ g(τ). Thus,

ft(σ) = (1− t)f(σ) + tg(σ) ⩽ (1− t)f(τ) + tg(τ) = ft(τ).

Let p ⩾ 0 be fixed. We now draw the family of persistence diagrams Dgmp(Fft)
as a multiset in R2 × [0, 1]. Each off-diagonal point of Xt := Dgmp(Fft) is of the form
x(t) = (ft(σ), ft(τ), t) for σ being the creator and τ being the destructor. Note that the
persistence pairings (σ, τ) may only change when the order of simplex insertion changes,
which only happens finitely many times when going from t = 0 to t = 1. Let us call
these values 0 = t0 < t1 < t2 < . . . < tn < tn+1 = 1. For simplicity, we assume that at
each of these values ti exactly two simplices have the same value fti .

Within each open interval (ti, ti+1) the pairings stay constant. Furthermore, every
off-diagonal point x(t) is a linear function of t in all three coordinates, meaning that it
defines a line segment.

Let us first assume that at some value ti+1, x(ti+1) is an off-diagonal point whose
creator and destructor are still paired after ti+1. In this case, x(t) continues in the same
direction after ti+1.

If on the other hand x(ti+1) is an off-diagonal point whose creator and destructor
get paired differently, recalling Exercise 4.4, there are exactly two pairs that swap their
creators or destructors, and these creators or destructors that are swapped must have
the same value in fti+1 . In the persistence diagram, this means that two points vertically
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or horizontally of each other swap creators/destructors. However, this just means that
for both of these line segments going into ti+1, there is a unique continuing line segment.

Note that for t = 0 or t = 1 we can also have that x(t) lies on the diagonal. This
means that its past/future creator and destructor have the same value in ft.

Every point thus moves along a polygonal path monotone in t. Every such path
is called a vine, and the multiset of all vines is called a vineyard, see Figure 6.2 for
an illustration. Based on this vineyard, we now wish to find a good matching giving
an upper bound on the Bottleneck distance. We simply take the matching where we
match the start point of every vine with its endpoint. To get a bound on the Bottleneck
distance, we simply need to get a bound for the distance of each matched pair.

birth

de
at
h

ti
m
e

ti+1

Figure 6.2: The vineyards in the proof of Theorem 6.6.

Between any ti and ti+1, a point x(t) moves at the rate δx(t)
δt

, which we can compute
to be

δ

δt

(
(1− t) · (f(σ), f(τ), t)

)
+ t · (g(σ), g(τ), t)) = (g(σ) − f(σ), g(τ) − f(τ), 1).

Projecting x(ti+1) and x(ti) to R2 we thus get two points yi+1, yi for which we can see
that

||yi+1 − yi||∞ = (ti+1 − ti) ·max
(
|g(σ) − f(σ)|, |g(τ) − f(τ)|

)
⩽ (ti+1 − ti) · ||f− g||∞.

Thus, since || · ||∞ is a norm and fulfills the triangle inequality, we also have that from
t = 0 to t = 1, the point can move at most ||f − g||∞. We thus have the desired bound
on the Bottleneck distance.
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Exercise 6.7. Show that Theorem 6.6 above can be tight for all p ⩾ 0 and all values
of ||f− g||∞.

Exercise 6.8. Let P and Q be subsets of a metric space. We say that P ∪Q is in δ-
separated position if for any p ∈ P and q1, q2 ∈ Q we have that |d(p, q1)−d(p, q2)| >
δ. Assume that P ∪Q is in δ-separated position and let Q ′ be an ε-perturbation of
Q, that is, there is a bijection between Q and Q ′ such that for every original point
q ∈ Q and its image q ′ ∈ Q ′ we have d(q, q ′) ⩽ ε. Let Dp and D ′

p be the persistence
diagrams for the p-dimensional persistent homology of the filtration induced by the
parameterized witness complexes Wr(Q,P) and W

r(Q ′, P), respectively. Show that
if ε < δ/2 then

db(Dp,D
′
p) ⩽ ε.

Further, show an example where this fails for ε > δ/2.

We wish to generalize the stability result above from simplicial filtrations to filtrations
of general topological spaces. To this end we consider some topological space X and a
function f : X→ R, which induces a sublevel set filtration for every r ∈ R. We only want
to consider tame functions: A function f is tame if all homology groups of sublevel sets
have finite dimension, and the homology groups only change at finitely many values,
called critical values.

Theorem 6.9. Let X be a triangulable topological space, and f, g : X→ R be two tame
functions. Then ∀p ⩾ 0, we have

db(Dgmp(Ff), Dgmp(Fg)) ⩽ ||f− g||∞.
We do not prove this theorem at this point, but with additional tools that we will

develop in Section 6.2, the proof of this (and of Theorem 6.6) will follow quite easily.

6.1.2 Wasserstein Distance

Consider the following three diagrams:
Which of Y1 and Y2 is X closer to? Intuitively, one clearly says Y1: There are simply

fewer features in Y1 that are not present in X. In terms of Bottleneck distance, there is
only one reasonable matching between X and Y1, and also only one between X and Y2:
We simply match each off-diagonal point with its closest point on the diagonal. Since
we only look at the longest edge in this matching, the Bottleneck distance is actually
the same for both pairs of diagrams, i.e., db(X, Y1) = db(X, Y2).

We can get rid of this counter-intuitive behavior of the Bottleneck distance by using
the Wasserstein distance.

Definition 6.10 (Wasserstein distance). For p ⩾ 0, and q ⩾ 1, the q-Wasserstein dis-
tance is defined as

dW,q(Dgmp(F), Dgmp(G)) :=

[
inf
π∈Π

( ∑
x∈Dgmp(F)

(||x− π(x)||∞)q
)]1/q
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X Y1 Y2

Intuitively, we now consider the length of all edges in the matching induced by the
bijection, as opposed to just the longest one, but the longer ones get more weight. Note
that for q = ∞, we retrieve the bottleneck distance, that is, dW,∞ = db.

We can see that the stability theorem we proved for Bottleneck distance does not
hold for Wasserstein distance: consider two simplex-wise monotone functions f and g
on a path, as illustrated in Figure 6.3. In both f and g the first vertex on the path is
mapped to 1 and the edges along the path are mapped to increasing odd numbers. In
f the remaining vertices along the path get mapped to increasing even numbers, and in
g to increasing odd numbers. In particular, ||f − g||∞ = 1. In the filtration defined by
f, at every even step we add a vertex, creating a new connected component, which gets
connected to the rest of the path at the next step. Thus, each vertex of the path will
give an off-diagonal point in the 0-persistence diagram, where all of them except the first
one have a lifespan of 1. On the other hand, in the filtration defined by g, we always
add the new vertices and their connecting edge in the same step, thus the 0-persistence
diagram only has a single off-diagonal point with infinite lifespan. In particular, we have
that for arbitrarily long paths we get arbitrarily large Wasserstein distances between the
diagrams for all q <∞.

A similar counterexample can also be found for topological spaces. Consider the
topological space [0, 1] and the two functions depicted by the curves in Figure 6.4. Here
we again have that ||f−g||∞ ⩽ ϵ, but the Wasserstein distance between the two diagrams
can be made arbitrarily big.

To avoid these types of counterexamples, we want to consider even nicer functions:

Definition 6.11 (Lipschitz). Let (X, d) be a metric space. A function f : X → R is
Lipschitz if there exists a constant C such that |f(x) − f(y)| ⩽ c · d(x, y) for all
x, y ∈ X.

For these functions we again get stability theorems, however we will not prove these
here.

Theorem 6.12. Let X be a triangulable, compact metric space. Let f, g : X→ R be tame
Lipschitz functions. Then there exist constants C and k (that may only depend on
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· · ·0 1 3 5
2 4 6

· · ·0 1 3 5
1 3 5

Figure 6.3: Two simplex-wise monotone functions with bounded infinity norm whose
persistence diagrams have unbounded Wasserstein distance.

X and on the Lipschitz constants of f, g) such that for every p ⩾ 0 and every q ⩾ k,

dW,q(Dgmp(Ff), Dgmp(Fg)) ⩽ C · ||f− g||1−k/q∞ .

Theorem 6.13. Let f, g : K → R be simplex-wise monotone functions. Then for all
p ⩾ 0 and all q ⩾ 1,

dW,q(Dgmp(Ff), Dgmp(Fg)) ⩽ ||f− g||q =
(∑
σ∈K

|f(σ) − g(σ)|q
)1/q

.

6.2 Interleaving of Persistence Modules

6.2.1 Interleaving Distance

Until now, we only compared persistence diagrams. We will now introduce the interleav-
ing distance, which instead compares persistence modules directly. Let us begin with a
formal definition of persistence modules.

Definition 6.14. A persistence module V over R is a collection V = {Va}a∈R of vector
spaces Va together with linear maps va,a ′ : Va → Va ′ for a ⩽ a ′, such that va,a = id
and vb,c ◦ va,b = va,c for all a ⩽ b ⩽ c.

You already know a few examples of persistence modules, e.g., the persistent homol-
ogy of sublevel set filtrations or of Čech or Vietoris-Rips complexes (here one simply
defines Va = 0 for a < 0).

To be able to define distances between persistence modules, we first need to figure
out when we want to call two persistence modules “the same”, or more formally speaking,
we want to define a notion of isomorphism.
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X = [0, 1]

f : g :

Figure 6.4: Two functions [0, 1] → R with bounded infinity norm whose persistence
diagrams have unbounded Wasserstein distance.

Definition 6.15. We say that two persistence modules U and V are isomorphic if there
are isomorphisms fa : Ua → Va for all a ∈ R such that

Ua Ua ′

Va Va ′

ua,a ′

fa fa ′

va,a ′

commutes both ways, i.e., fa ′ ◦ ua,a ′ = va,a ′ ◦ fa, and ua,a ′ ◦ f−1a = f−1a ′ ◦ va,a ′.

The basic idea of interleaving distance is to measure how close two persistence mod-
ules are to being isomorphic. For this, we allow ourselves some slack, in the sense that
Ua does not need to map to Va, but it can instead map to Va+ϵ, as long as all the
relevant maps still behave like they would for an isomorphism. We make this formal in
the next definition.

Definition 6.16 (ϵ-interleaving persistence modules). Let U and V be persistence modules
over R and let ϵ ⩾ 0. We say that U and V are ϵ-interleaved if there exist two
families of linear maps, φa : Ua → Va+ϵ and ψa : Va → Ua+ϵ such that the
following four diagrams are commutative:

Ua Ua ′

Va+ϵ Va ′+ϵ

ua,a ′

φa φa ′

va+ϵ,a ′+ϵ

and

Ua+ϵ Ua ′+ϵ

Va Va ′

ua+ϵ,a ′+ϵ

ψa

va,a ′

ψa ′
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Ua Ua+2ϵ

Va+ϵ

ua,a+2ϵ

φa ψa+ϵ and

Ua+ϵ

Va Va+2ϵ

φa+ϵψa

va,a+2ϵ

Note that if U and V are isomorphic, then they are 0-interleaved: the first type
of diagrams (the square diagrams) are the commutative diagrams in the definition of
isomorphic persistence modules and the the second type of diagrams (the triangular
diagrams) collapse to two arrows that say that the maps φa are isomorphisms with
inverses ψa.

Theorem 6.17. Assume U and V are ϵ-interleaved. Let δ > ϵ. Then U and V are also
δ-interleaved.

Proof. Given φ ′
a : Ua → Va+ϵ we define φa : Ua → Va+δ simply as φa := va+ϵ,a+δ◦φ ′

a.
Symmetrically, we define ψa := ua+ϵ,a+δ ◦ ψ ′

a. To check that the correct diagrams
commute, we only check the right diagram of every pair of symmetric diagrams shown
above. We have to distinguish two cases for the first diagram, a + δ < a ′ + ϵ and
a+ δ > a ′ + ϵ.

For the first case, we get the following diagram:

Ua Ua ′

Va+ϵ Va+δ Va ′+ϵ Va ′+δ

For the second case we get the diagram:

Ua Ua ′

Va+ϵ Va ′+ϵ Va+δ Va ′+δ

And finally, for the triangular diagram we get:

Ua Ua+2ϵ Ua+δ+ϵ Ua+2δ

Va+ϵ Va+δ

One can now verify that in all of these diagrams the correct paths commute.

Thus, the following definition makes sense:
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Definition 6.18 (Interleaving distance). dI(U,V) := inf{ϵ | U and V are ϵ-interleaved }.

Exercise 6.19. Show that interleaving distance is a pseudo-metric for persistence mod-
ules (up to isomorphism), i.e., prove that (i) the interleaving distance between iso-
morphic persistence modules is 0, (ii) the interleaving distance is non-negative, and
(iii) the interleaving distance fulfills the triangle inequality.

Also show that it is not a metric by showing that there exist non-isomorphic
persistence modules with interleaving distance 0.

Exercise 6.20. Let W1 and W2 be two arbitrary vector spaces. Let U be the persistence
module such that Ua =W1 for a ∈ [w, x), and Ua = 0, otherwise. For a, a ′ ∈ [w, x)
we have ua,a ′ being the identity map. For a < w or a ′ ⩾ x (or both), we have ua,a ′

being the zero map. Similarly, we define the persistence module V which is W2 in
a ∈ [y, z) and 0 otherwise.

Show that dI(U,V) ⩽ max(w−x
2
, z−y
2

).

The underlying ideas that allowed us to define the interleaving distance of persistence
modules can also be applied to filtrations.

Definition 6.21 (Interleaving for Filtrations). Let F,G be filtrations over R. F and G

are ϵ-interleaved if there exist maps φa : Fa → Ga+ϵ and ψa : Ga → Fa+ϵ such
that the same type of diagrams commute up to homotopy, that is, for example
φa ′ ◦ ιFa,a ′ ≃ ιGa+ϵ,a ′+ϵ ◦φa are homotopic (contiguous).

We again define the interleaving distance (now between filtrations):

dI(F,G) = inf{ϵ | F and G are ϵ-interleaved }.

From induced homology, we immediately get the following observation:

Observation 6.22. For all p ⩾ 0, dI(HpF, HpG) ⩽ dI(F,G).

As a first application of interleaving distance, we can quantify how different the Čech
and Vietoris-Rips filtrations are. Recall that for a point cloud P and a radius r, we
have the relationship between the Čech and Vietoris-Rips complexes as follows: Cr(P) ⊆
VR

r(P) ⊆ C
2r(P). Since this factor 2 is multiplicative, and we need an additive ϵ

for interleaving, let us just take the logarithmic scale (base 2) for the radius, i.e., we
define Crlog = C

2r and similarly VRrlog = VR
2r. Since 2(r+1) = 2 · 2r, we have Crlog(P) ⊆

VR
r
log(P) ⊆ C

r+1
log (P).

We thus have the following inclusions:

C
r
log C

r+1
log C

r+2
log

VR
r
log VR

r+1
log VR

r+2
log

Since these are all inclusions, all relevant diagrams must commute, and thus we get that
dI(Clog,VRlog) ⩽ 1.
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6.2.2 Stability with Respect to Interleaving Distance

The main motivation for interleaving distance is that it can be used to prove stability
results, at least under some tameness conditions.

Definition 6.23. A persistence module V is q-tame if the linear maps have finite di-
mension.

Note that in this definition, the q is not a parameter, just a name. All persistence
modules that show up in the context of persistent homology on point clouds are q-tame,
so this condition is not restrictive.

Theorem 6.24. If U,V are q-tame persistence modules over R, then

db(DgmU, DgmV) = dI(U,V).

Thus, for every interleaving one can find between two persistence modules or between
filtrations, one immediately gets an upper bound on the Bottleneck distance. This is
a very powerful result, and the proof of it is out of scope for these lecture notes. One
direction of the proof however follows from a decomposition result of persistence modules
that we will discuss in Section 6.3. But first, we will consider some examples of how
Theorem 6.24 can be used to prove stability theorems.

Exercise 6.25. Prove Theorem 6.9.

6.2.3 Stability for Čech Complexes

So far, we have only seen stability results comparing filtrations induced by different func-
tions on a fixed space. However, in applications in data analysis, we consider complexes
on point clouds, and two different point clouds might not have the same size. Thus, the
simplicial complexes on which we get filtrations are generally different. Using interleav-
ing distance, we can however still give stability results. In this section, we will do this
for Čech complexes.

Consider two point clouds P,Q in the same metric space X. Let us first consider
the really simple case, where P = {p}, and Q = {q} with d(p, q) = d. Then, B(p, r) ⊆
B(q, r+ d). Now, how does this generalize to larger point sets? To get the same kind of
behavior, we need that for every point in P, there exists some point in Q with distance
at most d. This motivates the following distance measure:

Definition 6.26 (Hausdorff distance). Let A,B ⊆ X be compact sets. Then the Hausdorff
distance between A and B is defined as

dH(A,B) := max{max
a∈A

d(a, B),max
b∈B

d(b,A)}.

Exercise 6.27. Show that Hausdorff distance is a metric.
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We can now see that if dH(P,Q) = d, then
⋃
p∈P B(p, r) ⊆

⋃
q∈Q B(q, r + d). From

this, we get the following lemma:

Lemma 6.28. For P,Q with dH(P,Q) = d, the (filtrations given by) the Čech complexes
of P and Q are d-interleaved.

Proof. Consider the following diagram:

C
r(P) C

r+d(P) C
r+2d(P)

⋃
p∈P B(p, r)

⋃
p∈P B(p, r+ d)

⋃
p∈P B(p, r+ 2d)

⋃
q∈Q B(q, r)

⋃
q∈Q B(q, r+ d)

⋃
q∈Q B(q, r+ 2d)

C
r(Q) C

r+d(Q) C
r+2d(Q)

≃ ≃ ≃

≃ ≃ ≃

The relevant sub-diagrams commute up to homotopy, since we only chain together ho-
motopies and inclusion maps. Note that for the trapezoidal diagrams we would need to
consider the horizontal inclusions between the Čech complexes in the diagram above for
arbitrary distances and not just d.

We can conclude the following

Theorem 6.29. db(Dgmp(C(P)), Dgmp(C(Q))) ⩽ dH(P,Q) for all p ⩾ 0.

Proof. By Theorem 6.24, Observation 6.22, and finally Lemma 6.28, we have

db(. . .) = dI(HpC(P), HpC(Q)) ⩽ dI(C(P),C(Q)) ⩽ dH(P,Q).

6.3 Interval Decomposition of Persistence Modules

In this section, we again look at persistence modules, this time as algebraic structures.
We consider persistence modules over R of vector spaces over some field F. We start by
looking at some special persistence modules, called interval modules.

Definition 6.30. An interval module I[b, d] is a persistence module

Va =

{
F if a ∈ [b, d],

0 otherwise.
and va,a ′ =

{
id b ⩽ a ⩽ a ′ ⩽ d,

0 otherwise.
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Similarly, we can define interval modules on open and clopen intervals, denoted by
I(b, d), I(b, d], and I[b, d). We write I⟨b, d⟩ to include all four of these types.

For an interval module we can easily talk about birth and death as we did in persistent
homology. If we have a persistent homology module that is (isomorphic to) an interval
module, the birth and death correspond to the boundaries b, d of the interval.

Definition 6.31. A persistence module U is called pointwise finite dimensional (p.f.d.) if
for all a ∈ R, Ua has finite dimension.

Note that all p.f.d. persistence modules are also q-tame.

Definition 6.32. Given two persistence modules U,V, we define their direct sum U⊕V
by (U⊕ V)a = Ua ⊕ Va and (u⊕ v)a,a ′ = ua,a ′ ⊕ va,a ′.

Here, the direct sum of maps just means applying the respective maps component-
wise.

Proposition 6.33. If U1,U2 are ϵ-interleaved, and V1,V2 are δ-interleaved, then U1⊕V1
and U2 ⊕ V2 are max{ϵ, δ}-interleaved.

Proof. Without loss of generality, let ϵ ⩾ δ, so we need to show that they are ϵ-
interleaved. Recall that if two persistence modules are δ-interleaved, they are also ϵ-
interleaved. Let φu, ψu be (series of) functions showing that U1,U2 are ϵ-interleaved.
Similarly, let φv, ψv be (series of) functions showing that V1,V2 are ϵ-interleaved. Then,
φu ⊕φv, ψu ⊕ψv show that U1 ⊕ V1 and U2 ⊕ V2 are ϵ-interleaved.

If we now have a direct sum of interval modules, we can still nicely talk about births
and deaths: we just consider each interval module in isolation. The following theorem
shows that surprisingly most persistence modules can be expressed as direct sums of
interval modules.

Theorem 6.34 (Structure theorem). Any p.f.d. persistence module decomposes uniquely
into interval modules, i.e., we have

U ∼=
⊕
i∈I

I⟨bi, di⟩.

The intervals ⟨bi, di⟩ are exactly the barcodes if U is a persistent homology module.

Note that unless we have some additional tame-ness condition on U, I is not guaran-
teed to be finite.

Recall that when we talked about persistent homology, we said that there is some
consistent global choice of basis for persistent homology groups. That is a consequence
of the structure theorem. The structure theorem also allows us to prove one direction of
Theorem 6.24, which we will do in the following.

Proposition 6.35. Consider two interval modules I1 = I⟨b1, d1⟩ and I2 = I⟨b2, d2⟩.
Then, dI(I1, I2) = db(DgmI1, DgmI2).

72



Introduction to TDA 6.3. Interval Decomposition of Persistence Modules

Proof. To prove that dI(I1, I2) ⩾ db(DgmI1, DgmI2), we show that every upper bound
on dI is also an upper bound on db: assume that we have maps φ,ψ showing that the two
modules are ϵ-interleaved. Then, consider ψa+ϵ◦φa = v1a,a+2ϵ, equality holding because
φ,ψ certify ϵ-interleaving and the triangular diagram commutes. Consider a ∈ ⟨b1, d1⟩.

Case 1: v1a,a+2ϵ = 0 for all a ∈ ⟨b1, d1⟩. Then, d1 − b1 < 2ϵ, and the (infinity-norm)
distance of (b1, d1) to the diagonal is less than ϵ. If this case would also hold for v2

we would be done, since for both DgmI1 and DgmI2 we could match the point to the
diagonal.

Case 2: v1a,a+2ϵ = id for some a ∈ ⟨b1, d1⟩. Then, d1 − b1 ⩾ 2ϵ. Furthermore, we have
φa(F) = F for all a ∈ ⟨b1, d1 − 2ϵ⟩. So, for these a, we must also have a+ ϵ ∈ ⟨b2, d2⟩.
This tells us that ⟨b2, d2⟩ must “cover” a large part of ⟨b1, d1⟩, namely we get b2 ⩽ b1+ϵ,
and d2 ⩾ d1 − ϵ. We can now see that |b2 − b1| ⩽ ϵ and |d2 − d1| ⩽ ϵ: to violate this,
⟨b2, d2⟩ would have to be a larger interval than ⟨b1, d1⟩ (in particular, it would be longer
than 2ϵ), and we could thus exchange their roles and get that b1 ⩽ b2+ϵ and d1 ⩾ d2−ϵ.
We thus know that we can just match the off-diagonal points to each other, and since
we must have d∞((b1, d1), (b2, d2)) ⩽ ϵ we get the bound on db.

We now prove the other direction, dI(I1, I2) ⩽ db(DgmI1, DgmI2). To see this, we
show that from every matching whose longest edge is ϵ, we get an ϵ-interleaving.

Case 1: The two off-diagonal points are matched to the diagonal. Then, we get that
di − bi ⩽ 2ϵ for both of them, and thus for all ϵ ′ > ϵ, I1 and I2 are ϵ ′-interleaved with
φ,ψ = 0 (recall Exercise 6.20). Thus, dI ⩽ ϵ.

Case 2: The points are matched with each other. Then, |b2−b1| ⩽ ϵ and |d2−d1| ⩽ ϵ.
Taking φ,ψ = id we can see that I1 and I2 are ϵ-interleaved. Thus, dI ⩽ ϵ.

We can now use this to show one direction of Theorem 6.24.

Corollary 6.36. Let U,V be p.f.d. persistence modules. Then we have that dI(U,V) ⩽
db(DgmU, DgmV).

Proof. We apply the structure theorem to decompose U,V into direct sums of interval
modules, i.e., U =

⊕
i∈I I⟨bi, di⟩ ⊕

⊕
j∈J 0 and V =

⊕
i∈I 0 ⊕

⊕
j∈J I⟨bj, dj⟩. From the

Bottleneck matching we get a matching between parts making up U and V. Since the
Bottleneck distance is the maximum length of any edge, we have db(DgmU, DgmV) ⩾
db(DgmI1, DgmI2) = dI(I1, I2) for every two interval modules that were matched to-
gether, where we used Proposition 6.35. Finally, we use Proposition 6.33 to get the
desired statement.

73


