
Chapter 7

Reeb Graphs and Mapper

In this chapter we look at another tool in topological data analysis, called Mapper. The
underlying idea of Mapper has its roots in Morse theory, where Georges Reeb defined
a graph to summarize a Morse function on a manifold. We first discuss these graphs,
called Reeb graphs, and then how to mimic the ideas for the case where instead of a
manifold we have point cloud data.

Before we dive into the mathematical details, a short remark about the pronunciation
of the word “Reeb graph”: Georges Reeb, after whom these graphs are named, was
a French mathematician born in the German speaking region Alsace. Thus, he likely
pronounced his name the German way, that is, with the “ee” spoken similar to the “ea”
in “bear” (as opposed to “beer”).

7.1 Reeb Graphs

The idea of Reeb graphs is that given some topological space X, and some function
f : X → R, we consider the preimage of f for some fixed value a ∈ R. We place one
point per connected path-component of the preimage. We do this for all values in R,
and connect the points corresponding to neighboring connected components in adjacent
preimages. More formally,

Definition 7.1. Let X be some topological space, and f a function f : X → R. Two
points x, y are called equivalent (x ∼ y), iff f(x) = f(y) = α and x and y are in the
same path-connected component of f−1(α). The Reeb graph Rf is the quotient space
X/ ∼.

We assume all of our functions to be levelset tame for the space X:

Definition 7.2. A function f : X→ R is levelset tame if

• each levelset f−1(α) has finitely many connected components, all of which are
path-connected, and

75

Chapter 7. Reeb Graphs and Mapper Introduction to TDA

X Rf

f : X → R

Figure 7.1: An example of a Reeb graph

• the homology groups of the levelsets only change at finitely many critical val-
ues.

As we have defined it, the Reeb graph is just a (continuous) topological space. We
call it a graph since it is 1-dimensional, but to arrive at a graph as we know it in
combinatorics, we will need to discretize it. For this we need to define vertices and
edges. There are many different possibilities of defining vertices and edges to discretize
the Reeb graph, but we want to define some type of minimal one.

Let us look at the neighborhood of some point p in the Reeb graph (as a topological
space). We look at how many ways there exist to go from p towards the direction of
higher f-value (we call this number the up-degree u), and how many ways to go towards
the direction of lower f-value (we call this the down-degree l). Depending on u and l,
we classify p as in Table 7.1.

Table 7.1: Classifications of points in the Reeb graph.

u l Classification
1 1 regular
0 > 0 maximum
> 0 0 minimum
⩾ 2 l up-fork
u ⩾ 2 down-fork

Note that a point can fall into multiple of these classes, for example it can be a maxi-
mum and a down-fork simultaneously, or an up-fork and a down-fork simultaneously. We

76

Introduction to TDA 7.1. Reeb Graphs

call the minima, maxima, up-forks, and down-forks critical points. Our discretization
places vertices at the critical points, and all the connections between critical points (that
are made up of only regular points) become the edges of our graph. Note that the graph
we get through this process is not necessarily simple, we may have multi-edges.

Exercise 7.3. Consider a double torus embedded in R
3. You can imagine it as the

result of taking the figure depicted in Figure 7.2 embedded in the plane x3 = 0,
replacing every point by a 3-dimensional ball with radius r < min{d/2, R/2}, and
taking the boundary of the union of these balls.

x1

x2

R R
d

Figure 7.2: The space blown up to a double torus in Exercise 7.3.

Draw the Reeb graphs for the functions f1(x) = x1, f2(x) = x2, and f3(x) = x3.

We next consider merge trees and split trees, which are variants of the Reeb graph,
where instead of levelsets, we look at sub-level sets or super-level sets.

Definition 7.4. Let X be some topological space, and f a function f : X → R. We
have x ∼M y for two points x, y, if and only if f(x) = f(y) = α and x and y are in
the same connected component of f−1((−∞, α]). The merge tree TM is the quotient
space X/ ∼M.

Note that in the merge tree, since we only increase the space under consideration,
we never have a connected component that splits. We can only have new connected
components appearing, and connected components merging. This also tells us that the
Merge tree (or its discretization) is always a tree.

Definition 7.5. Let X be some topological space, and f a function f : X→ R. We have
x ∼S y for two points x, y, if and only if f(x) = f(y) = α and x and y are in the same
connected component of f−1([α,∞)). The split tree TS is the quotient space X/ ∼S.

To be able to compute Reeb graphs in actual TDA applications, we now look at Reeb
graphs in the context of simplicial complexes. We consider a simplicial complex K and a
function f : |K| → R, which is piece-wise linear (linear on each simplex). We observe that

77

Chapter 7. Reeb Graphs and Mapper Introduction to TDA

the Reeb graph then only depends on the 2-skeleton of K. This is the case since looking
at a levelset is the same as cutting through the simplicial complex. When we cut through
a simplex, we generally get a simplex of one dimension lower. In a simplicial complex,
connectivity is completely determined by the 1-skeleton. Thus, before cutting, the 2-
skeleton suffices. We can also see that the critical points are images of the vertices of K.
This happens since a connected component can only appear, disappear, split, or merge
at some local maximum or minimum of the connected component. Since the function
is linear, the maximum or minimum of every simplex is always attained at some vertex.
We define the augmented Reeb graph of a simplicial complex with a PL-function, as
the discretization of the Reeb graph by placing a vertex for every connected component
in all the levelsets for the values a for which f(v) = a for some vertex of the simplicial
complex.

Theorem 7.6. Given a simplicial complex K with m faces and a piece-wise linear
function f : |K| → R on it, we can compute the augmented Reeb graph Rf of K with
respect to f in time O(m logm).

Proof. We only have to consider the 2-skeleton of K. To compute the augmented Reeb
graph, we perform a discrete sweep (or scan) through K in the order given by f, only
stopping at values a such that f(v) = a for some vertex v. In this sweep, we want to
keep track of the connected components.

For any α ∈ R, the levelset f−1(α) of the 2-skeleton of K is just a graph Gα: vertices
and edges of K induce vertices of Gα, triangles induce edges. In the open interval between
any two values a with f(v) = a, Gα stays the same. In our sweep, we track the graph
Gα. Whenever we enter a vertex v, faces may end: The vertices in Gα that correspond
to edges vw in K with f(v) > f(w) all get merged into a single vertex. Whenever we then
exit v, some faces may start. The vertex corresponding to v is split into one vertex per
edge vw in K such that f(v) < f(w). Some of these vertices are connected: the vertices
corresponding to the edges vw and vx are connected by an edge if vwx is a triangle of K.

To build the augmented Reeb graph out of these Gα graphs, we use a dynamic
spanning forest data structure. Such a data structure can update connected components
under both insertion and deletions of edges (vertices we only delete when also deleting
all their incident edges). There exist such data structures that can do each update in
amortized time O(logm), where m is the size of the graph. The size of the graph is
bounded by the sum m of vertices, edges, and triangles in K. Each such feature appears
at one point, and disappears at one point, and we thus have at most 2m insertions and
deletions in total, giving an O(m logm) algorithm.

Exercise 7.7. Consider a simplicial complex K and a PL (piece-wise linear) function
f : |K| → R. What happens to the Reeb graph when you add one additional face to
K and extend f accordingly?

78

Introduction to TDA 7.1. Reeb Graphs

7.1.1 Homology of Reeb Graphs

The Reeb graph of a topological space X with respect to a function f can be viewed as
a summary of X through the lens of f. The natural question is: how good of a summary
is it? It is clear that in general we lose information, for example on the dimension of
X, but we can still hope that some topological information is retained. In this section,
we thus compare the homology of the Reeb graph to the homology of X. Since the
Reeb graph Rf is a graph (a 1-dimensional object), we have Hp(Rf) = 0 for p ⩾ 2, so
any higher-dimensional homology gets lost. However, a graph can still have non-trivial
homology in dimensions 0 and 1.

Observation 7.8. For a levelset tame f : X→ R, we have β0(X) = β0(Rf).

In other words, the Reeb graph captures the 0-homology of the input space X per-
fectly, no matter which levelset tame function f we use.

Sadly, the same does not hold for the 1-homology. Let us consider a torus, as in
Figure 7.3. In general, it can be that the choice of function f determines whether we
capture a hole or not, consider for example a cylinder. However note that for the torus,
it is actually the case that no matter which function f we choose, we cannot capture its
1-homology (this is non-trivial to show).

f

Figure 7.3: The torus and its Reeb graph.

On the other hand, we can see that every cycle in the Reeb graph is indeed also a
cycle in the topological space X, and it cannot be filled in, so it is indeed a hole. Thus
we also get the following observation:

Observation 7.9. For a levelset tame f : X→ R, we have β1(X) ⩾ β1(Rf).

Can we somehow formalize which holes we lose? To do this, we split up homology into
“horizontal” and a “vertical” parts. The intuition behind these terms is that we consider
f to be a function pointing upwards, and thus roughly, horizontal means “perpendicular
to f” and vertical means “along f”.

79

Chapter 7. Reeb Graphs and Mapper Introduction to TDA

Definition 7.10. A p-th homology class h ∈ Hp(X) is called horizontal if there is a
finite set of values A = {a1, . . . , ak} such that h ∈ im(ι∗) where ι∗ is the map
Hp(

⋃
a∈A Xa) → Hp(X) induced by inclusion, where Xa = f−1(a).

This definition means that we need to be able to find a finite set of levelsets, such
that we can find cycles contained in these levelsets, which are in the homology class h
in Hp(X).

One now wonders whether the set of horizontal homology classes forms a group. Let
this set be Hp(X). It turns out that it is indeed a group.

Lemma 7.11. Hp(X) is a subgroup of Hp(X).

Proof. First, we see that the identity element 0 is in Hp(X). We can take an arbitrary
set A, and we can always map the 0 element of Hp(

⋃
a∈A Xa) to 0.

Next, we show that the set is closed under addition. Let p, q ∈ Hp(X), and we show
that p + q ∈ Hp(X). p has a pre-image in some levelset Ap, and q has a pre-image in
some levelset Aq. p+ q must have a pre-image in Ap ∪Aq.

Finally, we show that the inverse of every element is contained in the group, but since
every element is self-inverse in Z2-homology, we get that for every element its inverse is
also contained in Hp(X).

Since the horizontal homology is a sub-group, we can now easily define vertical ho-
mology by taking quotient groups.

Definition 7.12. The vertical homology group of X with respect to f is the group
∨

Hp(X) :=
Hp(X)/Hp(X).

Observation 7.13. dim(Hp(X)) = dim(Hp(X)) + dim(
∨

Hp(X)).

The following fact that we do not prove here shows that when we go from a space X
to its Reeb graph, we keep the vertical homology classes, and lose the horizontal ones.

Fact 7.14. The surjection ϕ : X→ Rf induces an isomorphism
∨

Φ :
∨

H1(X) → H1(Rf).

Corollary 7.15. Given X an orientable connected compact 2-manifold, and a Morse
function f : X→ R, then β1(Rf) = β1(X)/2.

Here, a 2-manifold is a space that locally at every point looks like R2. Orientable
means that there is an inside and an outside side. A Morse function is a “nice enough”
function defined in terms of some derivatives, which we do not need to specify here.

Exercise 7.16. (a) Consider a 2-dimensional geometric simplicial complex K embed-
ded in R

2. Consider the function f(x) = x1. Show that β1(K) = β1(Rf).

(b) Find a geometric simplicial complex K embedded in R
2 and a map f : K → R

such that β1(K) > β1(Rf).

80

Introduction to TDA 7.2. Distances for Reeb Graphs

7.2 Distances for Reeb Graphs

In order to compare Reeb graphs to each other, we again want to define distance measures
between them. We discuss two such measures here. The first one, called interleaving
distance, is, not surprisingly, similar to the interleaving distance of persistence mod-
ules. The second one, called functional distortion distance is similar to the Gromov-
Hausdorff distance for metric spaces.

7.2.1 Interleaving Distance

When do we want two Reeb graphs to be considered the same, and thus have distance
0? We definitely need that the graphs are isomorphic in the sense of graph isomorphism.
But further than that, we also want that this graph isomorphism is “function preserving”.
In other words, the critical points should lie on the same function levels. The idea of
the interleaving distance is to measure how far away from this we are. Thus, given two
Reeb graphs Rf, Rg, “how much” is missing towards a “function preserving isomorphism”?
Towards formalizing this idea, we need a few definitions.

Note that when we compare two Reeb graphs Rf, Rg, those can be Reeb graphs of
different spaces with regards to different functions.

Definition 7.17. An ϵ-thickening Xϵ of some topological space X is given by Xϵ :=
X× [−ϵ,+ϵ].

Definition 7.18. For a Reeb graph Rf consider a function fϵ : (Rf)ϵ → R such that

(x, t) 7→ f(x) + t.

The ϵ-smoothing of Rf, denoted by Sϵ(Rf) is the Reeb graph of (Rf)ϵ with regards
to fϵ.

An example of these definitions can be seen in Figure 7.4. Note that when we say
(Rf)ϵ, we mean an ϵ-thickening of Rf, not a Reeb graph with regards to some function fϵ.
The ϵ-smoothing Sϵ(Rf) is then a Reeb graph with regards to the function fϵ, but of
(Rf)ϵ, and not of the original space that Rf is the Reeb graph of. Furthermore, when
we write f(x) for some x ∈ Rf, we mean that we extend f to some function f∗ : Rf → R,
simply by mapping x (an element of X/ ∼, i.e., an equivalence class of ∼) to f(p) for
some point p ∈ X in the equivalence class x. We will just call this function f as well for
simplicity.

Definition 7.19. The function ι : Rf → Sϵ(Rf) with x 7→ [(x, 0)] is the quotiented inclusion
map. Here, [(x, 0)] denotes the equivalence class, or the connected component that
contains (x, 0) in f−1ϵ (fϵ(x, 0)).

Consider some function µ : Rf → Rg which is function preserving, i.e., f(x) = g(µ(x))
for all x ∈ Rf. A function-preserving map µ : Rf → Sϵ(Rg) induces a function preserving
map µϵ : Sϵ(Rf) → S2ϵ(Rg) with [(x, t)] 7→ [(µ(x), t)].

81

Chapter 7. Reeb Graphs and Mapper Introduction to TDA

Rf (Rf)ε Sε(Rf)

Figure 7.4: A Reeb graph, its ϵ-thickening, and its ϵ-smoothing.

Definition 7.20 (Reeb graph interleaving). Two Reeb graphs Rf, Rg are ϵ-interleaved, if
there exists a pair of function preserving maps φ : Rf → Sϵ(Rg), ψ : Rg → Sϵ(Rf)
such that the following diagram commutes:

Rf Sϵ(Rf) S2ϵ(Rf)

Rg Sϵ(Rg) S2ϵ(Rg)

ι

φ

ιϵ

φϵ

ι

ψ

ιϵ

ψϵ

Here, to understand why ιϵ makes sense, we need the following fact, the proof of
which is left as an exercise.

Observation 7.21. Sδ(Sϵ(Rf)) = Sδ+ϵ(Rf).

Note that by construction of ι, ιϵ and φϵ (or ψϵ, respectively), the trapezoidal parts
of this diagram commute trivially: φϵ ◦ ι(x) = φϵ([(x, 0)]) = [(φ(x), 0)] = ιϵ ◦ φ(x).
Furthermore, any two compact and connected Reeb graphs are ϵ-interleaved for some ϵ.
Lastly, if Rf and Rg are ϵ-interleaved, then they are also δ-interleaved for all δ ⩾ ϵ.

Definition 7.22. dI(Rf, Rg) = inf{ϵ | Rf, Rg are ϵ-interleaved}.

We once again have a stability theorem, which we will not prove here.

Theorem 7.23. For tame functions f, g : X→ R we have dI(Rf, Rg) ⩽ ||f− g||∞.

82

Introduction to TDA 7.2. Distances for Reeb Graphs

7.2.2 Functional Distortion Distance

As mentioned above, the functional distortion distance is motivated by the Gromov-
Hausdorff distance for metric spaces. Thus, the first step is to define a metric on a single
Reeb graph.

Definition 7.24. Let Rf be a Reeb graph of a space X, and u, v ∈ Rf (in the same
connected component of Rf), and let π be a path from u to v. We define the height
of π as height(π) = maxx∈π f(x) − minx∈π f(x). To turn this into a distance metric,
we consider Π(u, v),the set of all paths between u and v. Then, the function induced
metric on Rf is defined as

df(u, v) = min
π∈Π(u,v)

height(π).

In a sense, df(u, v) is the “thickness” of the thinnest “slice” of the space X in which u
and v are connected.

Definition 7.25 (Functional distortion distance). Let Rf and Rg be two Reeb graphs. Let
Φ : Rf → Rg, Ψ : Rg → Rf be continuous functions, but not necessarily function-
preserving. Then, we define correspondence and distortion:

C(Φ,Ψ) = {(x, y) ∈ Rf × Rg | Φ(x) = y or x = Ψ(y)}

D(Φ,Ψ) = sup
(x,y),(x ′,y ′)∈C(Φ,Ψ)

1

2
|df(x, x

′) − dg(y, y
′)|.

And finally, we define the functional distortion distance,

dFD(Rf, Rg) = inf
Φ,Ψ

max{D(Φ,Ψ), ||f− (g ◦Φ)||∞, ||g− (f ◦ Ψ)||∞}.
Also for this distance measure there is a stability theorem.

Theorem 7.26. Let f, g : X→ R be tame functions. Then, dFD(Rf, Rg) ⩽ ||f− g||∞.

We can also quantify the relation between the two discussed distances.

Theorem 7.27. dI(Rf, Rg) ⩽ dFD(Rf, Rg) ⩽ 3dI(Rf, Rg).

Exercise 7.28. Consider a merge tree T with regards to a function f. We define
the a-shift xa for any x ∈ T to be the unique “ancestor” of x with function value
f(xa) = f(x) + a.

We now consider two merge trees; T1 with regards to f, and T2 with regards to
g. We call T1 and T2 ϵ-compatible if there exist maps α : T1 → T2 and β : T2 → T1
such that we get the following commutativities:

• g(α(x)) = f(x) + ϵ for all x ∈ T1

83

Chapter 7. Reeb Graphs and Mapper Introduction to TDA

• f(β(y)) = g(y) + ϵ for all y ∈ T2

• β ◦ α(x) = x2ϵ for all x ∈ T1

• α ◦ β(y) = y2ϵ for all y ∈ T2.

The interleaving distance between merge trees dI(T1, T2) can now be defined as
the infimum of all ϵ such that T1 and T2 are ϵ-compatible. Show that dI(T1, T2) =
dFD(T1, T2).

Note: we technically only defined dFD for Reeb graphs. You can simply consider a
merge tree to be the Reeb graph of itself (with regards to the same filter function).

7.3 Mapper

Reeb graphs lose a lot of information, since they at most retain some 1-dimensional holes,
but no larger holes. To generalize Reeb graphs further, we start looking at neighborhoods
instead of levelsets, which will then lead to the Mapper algorithm.

7.3.1 An Approximation of the Reeb Graph

To begin, we consider the 1-dimensional case, and try to find an approximation of the
Reeb graph. Instead of looking at pre-images of points, we will now look at pre-images
of intervals. Let U = {Uα}α∈A be an open cover of R (i.e., a collection of open sets whose
union is R). As always, we consider a function f : X→ R. For each f−1(Uα), we consider
a partition into path-connected components, i.e., f−1(Uα) =

⋃
β∈Bα Vβ. We then look at

f∗(U) := {Vβ}, the set of all Vβ we get over all α. Our object of interest is the nerve of
this family, i.e., N(f∗(U)).

If we take sufficiently nice functions, and sufficiently fine covers, then N(f∗(U)) is
isomorphic to Rf.

7.3.2 Topological Mapper

We can generalize this idea to maps to arbitrary spaces.

Definition 7.29. Let X,Z be topological spaces. Then we call f : X → Z well-behaved
if for all path-connected open sets U ⊆ Z, f−1(U) has finitely many path-connected
components.

Definition 7.30 (Mapper). Let f : X→ Z be well-behaved, and U be a (finite) open cover
of Z. Then the Mapper is defined as M(U, f) := N(f∗(U)).

As an example, we look at X being the boundary of the 3-cube [0, 1]3. We then also
look at Z1 = R

2 spanned by the x- and y-axis, with f1 : X→ Z1 being the projection onto
this plane. Furthermore, we look at Z2 = R, spanned by just the x-axis, and f2 : X→ Z2
being again the projection.

84

Introduction to TDA 7.3. Mapper

X f ∗(U)U N(f ∗(U))
Figure 7.5: A space X, an open cover U of R, the family f∗(F), and its nerve.

We consider the open cover U2 of Z2: {(−∞, 1
3
), (0, 1), (2

3
,+∞)}. For Z1, we consider

the cover U1 := U2 × U2.

Exercise 7.31. (a) Consider spaces X,Z, a filter function f : X → Z, and an open
cover U of Z. Show that if the pullback cover f∗(U) is a good cover of X, then
M(U, f) is homotopy equivalent to X.

(b) Give an example of spaces X,Z, a filter function f : X → Z, and a good cover
U of Z, such that M(U, f) is not homotopy equivalent to X.

(c) Give an example of spaces X,Z, a filter function f : X→ Z, and an open cover
U of Z such that the pullback cover f∗(U) is not a good cover, but M(U, f) is
still homotopy equivalent to X.

7.3.3 Mapper for Point Clouds

We would like to apply the ideas of the topological Mapper to analyze the shape of data.
However, once again we have the issue that data usually does not come in the form of
a topological space, but as a set of data points with a notion of distance between them.
The Mapper algorithm for point clouds adapts the ideas of the topological Mapper to
this setting.

Input: In the most general setting, data comes as a finite metric space (P, dP), for ex-
ample as points in Rd or as vertices of a graph. We also require a cover U of a space Z,
usually Z = R, as input. Finally, we also need a filter function f : P → Z and a clustering
algorithm (which might also require some input parameters).

85

Chapter 7. Reeb Graphs and Mapper Introduction to TDA

x

y

M(U2, f2)

M(U1, f1)

Figure 7.6: The cover U∞, and the two Mappers. The Mapper M(U1, f1) consists
of an empty octahedron, with additional filled tetrahedra attached at the
purple vertices. The whole space thus collapses to an octahedron.

Algorithm: Since at the moment we only have a discrete metric space, we do not really
have the notion of connected components yet. For every U ∈ U, we thus cluster the pre-
image f−1(U) using some clustering algorithm, which we can also consider as an input.
Now, we can just consider each cluster Ci as a vertex of some simplicial complex K, and
add a face {C1, . . . , Ck} to K if these clusters (which are just point sets) have a common
point.

Output: We output K, or even just its 1-skeleton.
As you can see, this algorithm requires a lot of input parameters. While this allows

to encode previous knowledge of the data set (e.g. by choosing as filter function the
distance to a known center of the data), it also makes the space of possible outputs
very large. Picking the correct parameters is currently still an art form on its own, and
there is significant research being done towards understanding the interplay between the
parameters and statistical guarantees for certain good choices of parameters.

7.4 Multiscale Mapper

Motivated by the many tuneable parameters, we discuss here one idea to look at many
values at once. The multiscale Mapper is a combination of the ideas of persistence and
of Mapper. We here want to look at different covers.

Definition 7.32. Let U = {Uα}α∈A and F = {Vβ}β∈B be two covers of the same space X.
A map of covers is a map φ : A→ B such that for every α ∈ A, we have Uα ⊆ Vφ(α).

86

Introduction to TDA 7.4. Multiscale Mapper

Proposition 7.33. If φ : U → V is a map of covers (with a slight abuse of notation),
then the map N(φ) : N(U) → N(V) given on the vertices by φ is simplicial.

Proof. Let σ ∈ N(U). We need to show that the intersection
⋂
β∈N(φ)(σ) Vβ is non-

empty. ⋂
β∈N(φ)(σ)

Vβ =
⋂
α∈σ

Vφ(α) ⊇
⋂
α∈σ

Uα ̸= ∅

Thus, N(φ)(σ) ∈ N(V).

An example of this map between nerves can be seen in Figure 7.7.

Proposition 7.34. Let f : X→ Z be some map, and U,V be covers of Z, with φ : U → V

some map of covers. Then, there exists a map of covers f∗(φ) : f∗(U) → f∗(V).

Recall that f∗(U) is the cover of X consisting of the connected components of the
pre-images of the sets of U under f.

Proof. For every α, we have Uα ⊆ Vφ(α) =⇒ f−1(Uα) ⊆ f−1(Vφ(α)). We now need to go
from these pre-images to their connected components. Since every connected component
of f−1(Uα) must lie in a unique connected component of f−1(Vφ(α)), our desired map of
covers is given by exactly mapping to this connected component.

If we have multiple maps of covers, U φ→ V
ψ→ W, we can concatenate the maps, and

the f∗ function distributes: f∗(ψ ◦φ) = f∗(ψ) ◦ f∗(φ).
Let U = U1

φ1→ U2
φ2→ . . .

φn−1→ Un be a sequence of covers of Z with maps between
them, which we call a cover tower. By applying f∗ we get a cover tower f∗(U) of X.

Definition 7.35 (Multiscale Mapper). Let f : X → Z, U a cover tower of Z. Then, the
Multiscale Mapper MM(U, f) is

MM(U, f) := N(f∗(U)) = {N(f∗(Ui)) | Ui ∈ U})

together with the induced simplicial maps

N(f∗(φi)) : N(f∗(Ui)) → N(f∗(Ui+1)).

Applying homology, we get the sequence homology groups with induced homo-
morphisms between them, i.e., a persistence module:

Hp(N(f∗(U1)))
N(f∗(φ1))∗−→ . . .

N(f∗(φn−1))∗−→ Hp(N(f∗(Un))).

We can now view DgmpMM(U, f) as a topological summary of f through the lens
of U.

As opposed to the normal Mapper, at first glance the Multiscale Mapper adds even
more parameters. But a cover tower can be seen as a way of looking at a whole interval
of covers. For example, we can get a cover tower by increasing the size of all intervals
in an interval cover. The features of the data should show up as a robust feature that
persists for a longer time over this process, while spurious features obtained from choosing
“wrong” Mapper parameters should disappear quickly.

87

Chapter 7. Reeb Graphs and Mapper Introduction to TDA

Figure 7.7: Three pullback covers of a space X (thickened figure “8”), with their nerves
and the induced simplicial maps between them.

88

Introduction to TDA 7.4. Multiscale Mapper

Questions

24. What is a Reeb graph? State the definition and describe how we get the graph
structure.

25. How can we compute the augmented Reeb graph of a piece-wise linear func-
tion? Define the augmented Reeb graph and explain the algorithm to compute
it.

26. How much of the homology of the underlying topological space is captured by
the Reeb graph? Explain vertical and horizontal homology.

27. What is the interleaving distance for Reeb graphs? Give the definitions and
state the relevant stability theorems.

28. What is the functional distortion distance for Reeb graphs? Give the definitions
and state the relevant stability theorems.

29. What is the topological Mapper? State the Definition and give an example.

30. How can we use Mapper on point cloud data? Explain the Mapper algorithm
and describe the input parameters.

31. How can we use Mapper on several covers at once? Explain the Multiscale
Mapper.

89

