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Preface

These lecture notes are designed to accompany a course “Introduction to topological data
analysis” taught at the Department of Computer Science, ETH Zürich, since 2023. The
course is intended for students with a background in computer science or data science. It
requires knowledge of linear algebra, but does not assume any previous experience with
topology.

The course can be roughly divided into four parts. In the first part, we go over
the necessary mathematical foundations, in particular concepts from algebraic topology
such as homology. In the second part, we study the persistent homology pipeline. In
the third part, we discuss Reeb graphs and the Mapper algorithm. Finally, the fourth
part contains other applications of topology in computer and data science, as well as
applications of topological data analysis to other fields. At the end of each chapter there
is a list of questions that students are expected to be able to answer in the oral exam.

In the current setting, the course runs over 14 weeks, with three hours of lectures and
two hours of exercises each week. In addition, there are two sets of graded homeworks
which students have to hand in spread over the course.

These notes are an extended version of the scribe notes written by Simon Weber from
the first iteration of the course. We have tried our best to avoid mistakes, but experience
tells that there will be many that escape our detection. So in case you notice some
problem, please let us know, regardless of whether it is a minor typo or punctuation
error, a glitch in formulation, or a hole in an argument. This way the issue can be fixed
for the next edition and future readers profit from your findings.

We thank Anton Künzi and Johann Wenckstern for their helpful contributions.
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Chapter 1

Introduction

In many applications in data science, the data is given to us as a point cloud in some
(potentially high-dimensional) space. Interesting data about which we can actually make
statements using tools from data analysis usually has some underlying shape, and this
shape conveys information: think about points sampled from a sphere or a torus. In
both cases the point cloud will “look like” a 2-dimensional object, but the objects look
different. In order to describe and compare different shapes, in particular in higher
dimensions, we need some mathematical language. Luckily this language has already
been developed under the name of topology. In topological data analysis we use the
classical tools and language from topology to detect and describe the notion of “shape”
in data sets. The main tool we use for this is homology, which can be regarded as
“counting holes”. Let us illustrate this with some toy examples.

Figure 1.1: A circle (left) and a Figure-8 (right)

Consider the two shapes in Figure 1.1. On the left, you see a circle, on the right
a Figure-8, both in R2. If you had to count how many “holes” these shapes have, you
would probably argue along the following lines: the circle has one hole, as removing it
from R

2 we are left with one bounded connected component. Similarly, the Figure-8
has two holes. In particular, you would say that the two shapes are “different”, as they
have a different number of holes. This type of intuition is indeed correct, and topology
provides us with the language to make this mathematically precise.
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Introduction to TDA

Figure 1.2: Points sampled from a circle (left) and a Figure-8 (right).

Let us now look at the 2-dimensional data sets in Figure 1.2. For a human, it is
immediately visible that the data sets are (noisy) samples of the shapes of Figure 1.1.
How do we get a computer to “see” this? Note that we cannot count the number of holes
as we did above: as we are just given finitely many points, there are no holes in both
data sets. However, by squinting our eyes a bit, we clearly see the different shapes from
which we sampled. A mathematical analogue of squinting one’s eyes could be to enlarge
the points to disks with some small radius. This is depicted in Figure 1.3.

Figure 1.3: Enlarging the points to disks shows the shape.

Indeed, choosing a large enough radius, by considering the union of the disks we
again get shapes that look like the two shapes we sampled from. In particular, on the
left we again have one hole whereas on the right we have two holes. Unfortunately, it is
not at all clear what radius we should choose. Indeed, by choosing a radius that is too
small, we might not create all the holes of the original shape. On the other hand, by
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Chapter 1. Introduction Introduction to TDA

choosing a radius that is too large, we might fill in some of the holes1. This is depicted
in Figure 1.4.

Figure 1.4: Enlarging the disks too much, we lose the shapes again.

Of course we could now try to somehow estimate a good radius. However, this is
quite a difficult task in general. The key idea of persistent homology is to continuously
grow the disks and keep track of the number of holes and how long they live. During
this process of growing the disks, many holes will be created. However, many of them
are filled in shortly after they are created, see Figure 1.5 for an example. In persistent
homology, we keep track of all holes created in the process, together with timestamps
of when they are created and when they are filled in. This gives a lifetime for each
hole. The intuition behind this is that holes with a short lifetime are just a result of the
process, whereas holes with a long lifetime convey information about the shape of the
underlying data.

Let us consider yet another point cloud, this time sampled from two nested circles,
see Figure 1.6. Two circles give us two holes, so in the process of growing disks we expect
to see two holes with a long lifetime.

One way to visualize the lifetimes of holes is through barcodes : for each hole, we
draw an interval whose startpoint and endpoint correspond to the time of creation of
the hole, and when it got filled in. Doing this for the point cloud in Figure 1.6, we get
the barcodes depicted in Figure 1.7. Indeed, while there are many intervals, only two of
them are long, implying that there are two holes inherent to the underlying data, which
agrees with the fact that the points were sampled from two circles.

1The same is true for squinting your eyes: if you squint them too much, you close them and do not see
anything...
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Figure 1.5: In the growing disks process, many holes get filled in shortly after they
are created.

Figure 1.6: Points sampled from two nested circles.

The main work we will do in these lecture notes is to formalize this process of grow-
ing disks and keeping track of holes, as we sketched above. For this we first introduce
some essential background of homology theory in Chapter 3. This requires some mathe-
matical background that goes above linear algebra. This background will be introduced
in Chapter 2. The growing disks process is modeled via nested simplicial complexes,
and there are several different such complexes that can be defined. Some of these are
discussed in Chapter 5. Keeping track of holes created and filled in is done via the the-
ory of persistent homology, which we introduce in Chapter 4. In this chapter we also
discuss algorithms to compute persistent homology. Once we have computed persistent
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Chapter 1. Introduction Introduction to TDA

Figure 1.7: The barcodes from two nested circles.

homology and have the output, for example in the form of barcodes, we might want
to compare different such outputs with each other. For this, there are several distance
measures, which we discuss in Chapter 6. There we also mathematically prove stability
results stating that if the data is perturbed only a little, then also the output cannot
change too much.

Persistent homology is not the only application of topology to the analysis of data.
Another widely used tool in topological data analysis is Mapper, which we discuss in
Chapter 7. Finally, we discuss the computational problem of finding nice representatives
of holes in Chapter 8.

These lecture notes focus a lot on the mathematical theory behind topological data
analysis. Topological data analysis has however seen many successful applications in
recent years. We highlight some of them in Chapter 9. There are also powerful program-
ming libraries available that implement many of the concepts discussed in these lecture
notes. For the coding aspects of the topics in these lecture notes there are interactive
notebooks on the course webpage.
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Chapter 2

Mathematical Foundations

2.1 Topological Spaces

Topology, sometimes also called “rubber-sheet geometry”, stems from the Greek words
tópos, which means place or locality, and lógos, which means study. So, it can be roughly
translated as the study of places and shapes. Indeed, as the name rubber-sheet geometry
suggests, topology studies similar objects as geometry, but in a setting where properties
are preserved under continuous deformations like stretching and twisting. In particular,
these properties should be independent of metrics, but we would still like to have ways
to describe proximity between points. We do this by looking at open neighborhoods of
points. The core objects in topology are topological spaces, whose definition captures
the system of open neighborhoods of the points in the space.

Definition 2.1. A topological space (X, T) is a set of points X, with a system T of
subsets of X (called the topology on X), such that

1. ∅ ∈ T , X ∈ T .

2. For every S ⊆ T ,
⋃
S ∈ T .

3. For every finite S ⊆ T ,
⋂
S ∈ T .

The sets in T are called the open sets of X.

For example, setting X = R
2 and T to be the collection of open subsets (in the

geometric/calculus sense) of R2, we can check that (X, T) is a topological space. A
further example of a topological space is (X, 2X), where 2X denotes the family of all
subsets of X. This is called a discrete topology.

Another example is the Euclidean space X = R
d, where the open sets T are defined

as we know from calculus. This example also shows why we restrict the third condition
of the definition above only to finite intersections of open sets: If we allowed infinite
intersections in Condition 3, a set {p} consisting of a single point p ∈ Rd (which by the
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Chapter 2. Mathematical Foundations Introduction to TDA

calculus definition is not an open set) would have to be considered to be open; it is the
intersection of the infinite series of open balls of radius 1/n centered at p, for n ∈ N.

In most applications in these lecture notes, we work with subspaces of this Euclidean
space Rd. In that context we not only know the notion of open sets from calculus, but
also notions such as closed sets, closure, interior and boundary. These terms can also
be defined for abstract topological spaces:

Definition 2.2. A set Q ⊆ X is called closed, if its complement X \ Q is open. The
closure clQ is the smallest closed set containing Q. The interior intQ is the union
of all open subsets of Q. The boundary bndQ is the set minus its interior: bndQ =
Q \ intQ.

Note that sets can be open and closed simultaneously: in every topological space
(X, T), ∅ and X are such examples. In a discrete topology, every subset S ⊆ X is both
open and closed.

Exercise 2.3. Show that a finite union of closed sets is closed.

So far we have only seen two topological spaces: Euclidean space, and the (rather
boring) discrete topology on any set X. In order to see the value in the abstractions we
are doing, we would like to have more examples of topological spaces. In particular, it
would be great if we had a way to get new topological spaces from known ones. In the
following we discuss some ways to do this, starting with taking intersections.

Lemma 2.4. Let (X, T) be some topological space, and Y ⊆ X. Then, U := {A∩Y | A ∈ T }
is a topology on Y. We call this a subspace topology.

Proof. We check the three conditions of a topology:

1. ∅ = ∅ ∩ Y, therefore ∅ ∈ U. Similarly, Y = X ∩ Y, and thus Y ∈ U.

2.
⋃
i∈I(Ai ∩ Y) = (

⋃
i∈IAi) ∩ Y, and thus

⋃
i∈I(Ai ∩ Y) ∈ U.

3.
⋂n
i=1(Ai ∩ Y) = (

⋂n
i=1Ai) ∩ Y, and thus

⋂n
i=1(Ai ∩ Y) ∈ U.

Since we have seen a natural topology on Rd, this already gives us a natural topology
for all subsets of Rd.

Another way to get topological spaces is as a product of spaces. We will not discuss
the details of this here, and refer the interested reader to any textbook on topology, such
as the excellent book by Munkres [2].

Fact 2.5. Let (X, TX), (Y, TY) be two topological spaces. Then there exists a topology
on X× Y, called the product topology.

Finally, we can also get a topological space by taking the union of two disjoint topo-
logical spaces. If a space can be obtained as such a union, we call it disconnected:

12



Introduction to TDA 2.2. Metric Spaces

Definition 2.6. A topological space (X, T) is disconnected, if there are two disjoint non-
empty open sets U,V ∈ T , such that X = U ∪ V. A topological space is connected, if
it is not disconnected.

Exercise 2.7. In this exercise, we will use topology to prove that the set of primes is
infinite.

We define the sets S(a, b) as follows:

S(a, b) := {an+ b | n ∈ Z}, ∀a ∈ Z \ {0}, b ∈ Z

We then say that a set U ⊆ Z is open, if and only if for all x ∈ U, there exists
a ∈ Z such that S(a, x) ⊆ U. This is equivalent to saying that every open set U is
a union of zero or more (including infinitely many) sets S(a, b).

(a) Show that this defines a topology on Z.

(b) Let A ⊂ Z be finite and non-empty. Show that Z \A cannot be closed.

(c) Show that S(a, b) is both open and closed.

(d) Show that⋃
p prime

S(p, 0) = Z \ {−1, 1}

(e) Conclude that there are infinitely many primes.

2.2 Metric Spaces

Recall that topological spaces should capture neighborhoods of points without requiring
the notion of a distance. However, if we do have distances, we should still be able to
use the framework of topological spaces. In other words, topological spaces should be a
generalization of spaces with distances.

Definition 2.8. A metric space (X, d) is a set X of points and a distance function
d : X× X→ R satisfying

1. d(p, q) = 0 if and only if p = q.

2. d(p, q) = d(q, p), ∀p, q ∈ X. (Symmetry)

3. d(p, q) ⩽ d(p, s) + d(s, q), ∀p, q, s ∈ X. (Triangle inequality)

Note that these three conditions imply that d(p, q) ⩾ 0 for all p, q ∈ X: If some
distance d(p, q) would be negative, we would have 0 = d(p, p) ⩽ d(p, q) + d(q, p) =
2 · d(p, q) < 0, a contradiction.

Fact 2.9. Every metric space has a topology (the metric space topology) given by the
open metric balls B(c, r) = {p ∈ X | d(p, c) < r} and their unions.

13



Chapter 2. Mathematical Foundations Introduction to TDA

2.3 Maps Between Topological Spaces

In most areas of mathematics, there are two things that are at the core of every theory:
objects, and mappings between them. For example, in linear algebra we study vector
spaces and the linear maps between then. Now that we have defined the objects of study
— topological spaces — we want to look at the mappings between them.

Definition 2.10. A function f : X → Y is continuous if for every open set U ⊆ Y, its
pre-image f−1(U) ⊆ X (the set of all elements x ∈ X such that f(x) ∈ U) is open.
Continuous functions are also called maps. If f is an injective map, it is called an
embedding.

Let us give some examples:

• For X ⊆ Y, we write X ↪→ Y for the function f(x) = x, ∀x ∈ X. This function, which
is also called the inclusion map, is continuous: f−1(U) = U ∩ X, which is open in
the subspace topology on X.

• For a function f : R→ R, continuity agrees with the “ϵ-δ” definition of continuity
from calculus.

Exercise 2.11. A topological space (X, T) is called path-connected if any two points
x, y ∈ X can be joined by a path, i.e., there exists a map f : [0, 1] → X of the segment
[0, 1] ⊂ R onto X such that f(0) = x and f(1) = y. Prove that a path-connected space
is connected.

An important question we have to answer is when we want to consider two topological
spaces to be “the same”. In the rest of this section we develop some notions of equivalence
of topological spaces, each based on the existence of some continuous function(s).

Definition 2.12. A homeomorphism is a bijective map f : X → Y whose inverse is also
continuous. Two topological spaces are homeomorphic, if there is a homeomorphism
between them. We also write X ≃ Y to say that X, Y are homeomorphic.

To make sure that homeomorphism is a reasonable notion of equivalence, we should
check that it is indeed an equivalence relation.

Exercise 2.13. Show that the relation of being homeomorphic is an equivalence rela-
tion, that is, show that every space is homeomorphic to itself, show that the relation
is symmetric (X ≃ Y iff Y ≃ X), and show that ≃ is transitive (if X ≃ Y and Y ≃ Z,
then X ≃ Z).

Let us apply our definition to some examples, to see whether it captures our intuition:

• The boundary of a tetrahedron is homeomorphic to the sphere S2 (with both spaces
considered as a subspace of R3). A homeomorphism can be found by taking a point
c in the interior of the tetrahedron, and sending each point p of the boundary to
the point f(p) on the ray from c through p such that d(c, f(p)) = 1.

14



Introduction to TDA 2.3. Maps Between Topological Spaces

• The open interval I := (−1, 1) is homeomorphic to R. The following map f is a
homeomorphism: f : I→ R, x 7→ x

1−|x|
. Its inverse is f−1 : R→ I, y 7→ y

1+|y|
.

• All knots (a knot is the image of an embedding of the circle into R3) are homeo-
morphic. Thus, we cannot distinguish between knots using only homeomorphism.

'

Figure 2.1: Two knots.

Exercise 2.14. Give an example of a map f : X→ Y that is bijective but not a homeo-
morphism.

Exercise 2.15. Consider a grid of 2 vertical line segments and k + 2 horizontal seg-

ments, for some k ⩾ 0. For k = 1, this looks as follows:

Now, we consider the problem of placing a point on each of the k + 2 horizontal
line segments, such that each of the k+ 4 total line segments contains at least one
point.

(a) How could one define a topology on the set of all such point placements?

(b) Convince yourself that this space is homeomorphic to Sk.

The example of the knots shows that in certain cases, homeomorphism does not
capture all the information we can use to distinguish two spaces. In this example, this
distinguishing information is not really stored in the topological spaces themselves, but
in the way they are embedded in the “ambient” space (in this example R3). In such
a case, where the two spaces we consider are both embedded into the same ambient
space, we can not only look at maps between the two spaces themselves, but we can also
consider whether one of them can be continuously deformed into the other:

Definition 2.16 ([1, Def. 1.18]). An isotopy connecting X ⊆ A and Y ⊆ A is a continuous
map ϕ : X× [0, 1] → A, such that ϕ(X, 0) = X, ϕ(X, 1) = Y, and ∀t ∈ [0, 1], ϕ(·, t) is a
homeomorphism between X and its image. Two spaces are called isotopic, if there
is an isotopy connecting them.

Exercise 2.17. Show that the relation of being isotopic is an equivalence relation.

Let us check isotopy on a few examples, starting with the knots from above:
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Chapter 2. Mathematical Foundations Introduction to TDA

• The two knots from Figure 2.1 above (embedded in A = R
3) are homeomorphic

but not isotopic. Isotopy thus captures our intuition more accurately than home-
omorphism in this case.

• Let X ⊂ R be the union of {0}, and [1, 2], and let Y ⊂ R be the union of [0, 1] and
{2}. These spaces are homeomorphic (X ≃ Y), but not isotopic. Just as with the
knots, the difference between these spaces does not lie in their topology, but in the
way they are embedded into the ambient space R.

• Consider the two spaces in Figure 2.2, which are considered to be embedded in
the ambient space A consisting of R3 minus the grey infinitely long pole in the
middle. Do you think the spaces are isotopic? Most people would probably ar-
gue that they are not, as in the left space both loops of the handcuff are locked
around pole while in the right space one loop is free. However, it turns out that
the spaces are in fact isotopic. An isotopy is illustrated by the following video:
https://www.youtube.com/watch?v=wDZx9B4TAXo

Figure 2.2: Left: Both loops of the handcuffs are wrapped around an infinite pole.
Right: Only one loop of the handcuffs is wrapped around the infinite pole.
These spaces are isotopic.

Using isotopy we have now managed to distinguish between two spaces (embeddings)
that homeomorphism could not distinguish. On the other hand, homeomorphism is also
very restrictive: For example, any two-dimensional space X (such as the mantle of a
cylinder) cannot be homeomorphic to any one-dimensional space Y (such as a circle),
simply due to the difference in cardinality of X and Y. We thus also want to develop a
weaker notion of equivalence than homeomorphism.
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Introduction to TDA 2.3. Maps Between Topological Spaces

To do this, we take the idea of continuous deformations from isotopy, but instead of
applying it to deform spaces into each other, we deform maps into each other:

Definition 2.18. Let g, h be maps X → Y. A homotopy connecting g and h is a map
H : X × [0, 1] → Y such that H(·, 0) = g and H(·, 1) = h. In this case g and h are
called homotopic.

Before we use homotopies to define an equivalence on topological spaces, let us again
consider some examples:

• The inclusion map g : B3 ↪→ R
3 (where B3 is the unit ball in R3), and the constant

map h : B3 → R
3 which sends every point to the origin, are homotopic, as shown

by the homotopy
H(x, t) = (1− t)g(x).

• The identity map g : S1 → S1, and the constant map h : S1 → S1 which sends
everything to a single point p ∈ S1, are not homotopic.

The notion of homotopy now allows us to define our desired equivalence relation on
topological spaces that is weaker than homeomorphism. Intuitively, this relation says
that two spaces are the same if they can be continuously transformed into each other not
only by bending, twisting and stretching, but also by shrinking or blowing up parts of
different dimensions. However, note that unlike with isotopy, we do not need to consider
the two spaces to be embedded in any ambient space.

Definition 2.19. Two spaces X, Y are homotopy equivalent if there exist maps g : X→ Y

and h : Y → X such that:

• h ◦ g is homotopic to idX (the identity map x 7→ x), and

• g ◦ h is homotopic to idY.

Exercise 2.20. Show that the relation of being homotopy equivalent is an equivalence
relation.

Let us consider some examples:

• The circle S1 and R
2 \ {0} are homotopy equivalent: We pick g as the inclusion

map S1 ↪→ R
2 \ {0}, and h(x) := x

|x|
. We see that h ◦ g(x) = x, i.e., h ◦ g = idS1 .

Furthermore, g ◦h(x) = h(x). Finally, g ◦h and idR2\{0} are homotopic as certified
by the homotopy H(x, t) := tx+ (1− t)h(x).

• The cylinder mantle and the circle are homotopy equivalent, but not homeomor-
phic.

• Any ball Bd is homotopy equivalent to the single point. We call such spaces
contractible.
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The next lemma shows that homotopy equivalence is a strictly weaker notion than
homeomorphism:

Lemma 2.21. If X and Y are homeomorphic, they are also homotopy equivalent.

Proof. Let g : X→ Y be the homeomorphism, and h := g−1 its inverse. Then g◦h = idY
and h ◦ g = idX, and id is homotopic to itself.

With the need for two maps and a proof that they are homotopic, proving homotopy
equivalence directly can be quite tedious. The following notion of deformation retracts
gives an easy way of proving homotopy equivalence in some cases.

Definition 2.22. Let A ⊆ X. A deformation retract of X onto A is a map R : X×[0, 1] → X,
such that

• R(·, 0) = idX

• R(x, 1) ∈ A, ∀x ∈ X

• R(a, t) = a, ∀a ∈ A, t ∈ [0, 1]

If such a deformation retract of X onto A exists, we also say that A is a deformation
retract of X.

The intuition behind a deformation retract is that the map R continuously shrinks X
to A, while leaving A fixed. Note that unlike homeomorphism, isotopy and homotopy
equivalence, deformation retracts are inherently asymmetric.

Fact 2.23. If A is a deformation retract of X, then A and X are homotopy equivalent.

Let us use this to prove homotopy equivalence of some examples:

• The circle S1 is a deformation retract of R2 \ {0}: R(x, t) = (1 − t)x + t · x
|x|

. Note
how much easier this is to prove without needing to use the two maps h and g as
above.

• A punctured torus can be deformation retracted onto the symbol 8 where one of
the two circles is rotated by 90◦, as seen by the following video:
https://www.youtube.com/watch?v=tz3QWrfPQj4

One may think that deformation retracts are only useful for proving homotopy equiv-
alence when one space is a subspace of the other. However, the following fact shows that
deformation retracts can prove homotopy equivalence of any pair of spaces:

Fact 2.24. X, Y are homotopy equivalent if and only if there exists a space Z such
that X and Y are deformation retracts of Z.

An example of this fact can be found in Figure 2.3.
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Figure 2.3: The top space deformation retracts to both spaces below, showing that
they are homotopy equivalent.

Exercise 2.25. Sort the letters of the alphabet into equivalence classes under homotopy
equivalence.

Exercise 2.26. Show that both a cylinder and a Möbius strip are homotopy equivalent
to a circle.

Exercise 2.27. Let X be S2 where the north pole and the south pole have been glued
together, see Figure 2.4a. Let Y be S2 with an S1 attached at the north pole, see
Figure 2.4b.

(a) The space X. (b) The space Y.

Figure 2.4: The spaces from Exercise 2.27.

Give an informal argument that X and Y are homotopy equivalent. Bonus ques-
tion: Are they also homeomorphic?

We note that in general showing existence of a map with certain properties (e.g., a
homeomorphism, isotopy, homotopy) is easy: just give a map and show that it satisfies
the required properties. On the other hand, showing that such a map cannot exist is hard,
as there are usually infinitely many candidate maps. The idea of algebraic topology is to
identify invariant properties preserved by these maps. Then, we know that no map can
exist between spaces on which these invariants differ. An example of such an invariant is
the number of “holes” a space has, which we will formalize when we introduce the notion
of homology.
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2.4 Algebra

In this section we recap the necessary background in algebra that is needed for the basics
of homology theory. Just as in the previous sections, we first introduce the objects of
study, followed by the maps between them.

Definition 2.28. A group (G,+) is a set G together with a binary operation “+” such
that

1. ∀a, b ∈ G: a+ b ∈ G

2. ∀a, b, c ∈ G: (a+ b) + c = a+ (b+ c) (Associativity)

3. ∃0 ∈ G: a+ 0 = 0+ a = a ∀a ∈ G

4. ∀a ∈ G∃− a ∈ G: a+ (−a) = 0

(G,+) is abelian1 if we also have

5. ∀a, b ∈ G: a+ b = b+ a (Commutativity)

Let us point out some examples:

• (Z,+) is a group (even an abelian one), but (N,+) is not, since any non-zero
number does not have an inverse element.

• Consider the (very large) set of all sequences of moves of a Rubik’s cube that do
not contain a subsequence equivalent to doing nothing. This set forms a group
(with the “+” operation being concatenation), but not an abelian one: let L denote
moving the left face clockwise, and let U denote moving the upper face clockwise.
Replacing “clockwise” by counter-clockwise we get −L and −U, respectively. Now,
if the group was abelian, then L+U−L−U should give the same configuration again,
but if you do these moves on a Rubik’s cube, you will see that the configuration
has changed.

As groups can be very large, even infinitely large, it can be useful to have a concise
way of writing them:

Definition 2.29. Let (G,+) be a group.
A subset A ⊆ G is a generator if every element of G can be written as a finite sum
of elements of A and their inverses.
A subset B ⊆ G is a basis if every element of G can be uniquely written as a
finite sum of elements of B and their inverses (ignoring trivial cancellations, i.e.,
a+ c+ (−c) + (−b) = a+ (−b)).
An abelian group that has a basis is called free.

1Note that unlike other mathematical concepts named after a person, abelian is usually not capitalized.
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Examples:

• The six standard moves of the Rubik’s cube (rotating the top, bottom, front, back,
left, or right layer clockwise by 90◦) are a generator for the Rubik’s cube move
sequences.

• {1} is a basis of (Z,+).

Exercise 2.30. A cyclic group is a group G that contains an element g ∈ G such that
{g} is a generator of G. Show that every cyclic group is abelian (commutative).

Exercise 2.31. Consider a Rubik’s cube. Prove that no sequence X of elementary
moves exists such that every Rubik’s cube can be solved by repeatedly applying X.

Definition 2.32. For some group (G,+), H ⊆ G is a subgroup, if (H,+) is also a group.

For example, the even integers (including 0) are a subgroup of (Z,+). Subgroups are
important in group theory, as they can be used to partition a group into several parts:

Definition 2.33. Let H ⊆ G be a subgroup of (G,+), and a ∈ G.
The left coset a+H is the set a+H := {a+ b | b ∈ H}, and the right coset H+ a :=
{b+ a | b ∈ H}. If G is abelian, a+H = H+ a, and they are simply called the coset.
For G abelian, the quotient group of G by H, denoted by G/H, is the group on the set
of cosets {a+H,a ∈ G} with the operation ⊕ defined as (a+H)⊕(b+H) = (a+b)+H,
∀a, b ∈ G.

Examples:

• Let G = (Z,+) and H = nZ = {n ·a | a ∈ Z}. Then, G/H = {0+Z, 1+Z, . . . , (n−
1) + Z} is the group usually referred to as Zn, the group of modular arithmetic
modulo n.

• R/Z is the circle group (the multiplicative group of all complex numbers of absolute
value 1). Try and convince yourself of this!

In order to compare groups with each other, we again want a notion of maps between
groups, that behave well with the group structures:

Definition 2.34. A map h : G → H between abelian groups (G,+) and (H, ⋆) is a
homomorphism if h(a+ b) = h(a) ⋆ h(b), ∀a, b ∈ G.
A bijective homomorphism is called an isomorphism, and then we write G ∼= H and
say that G and H are isomorphic.

kernel kerh := {a ∈ G | h(a) = 0}

image imh := {b ∈ H | ∃a ∈ G with h(a) = b}

cokernel cokerh := H/ imh
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Note that we are assuming something in our definition of the cokernel: for the defi-
nition of a quotient group to apply, we need the divisor group to be a subgroup of the
dividend group. Luckily, the following lemma says that imh is always a subgroup of H.

Lemma 2.35. kerh and imh are subgroups of (G,+) and (H, ⋆), respectively.

Proof. We first prove this for kerh.

1. a, b ∈ kerh ⇒ h(a) = h(b) = 0. By definition of homomorphism, h(a + b) =
h(a) ⋆h(b) = 0 ⋆ 0 = 0, and thus by definition of kerh, a+b ∈ kerh. We conclude
that kerh is closed under +.

2. Associativity follows from associativity of + in G, since kerh ⊆ G.

3. ∀a ∈ G : h(0) ⋆ h(a) = h(0 + a) = h(a), and thus h(0) = 0, from which 0 ∈ kerh
follows.

4. Let a ∈ kerh. Then, 0 = h(0) = h(a − a) = h(a) ⋆ h(−a) = 0 ⋆ h(−a) = h(−a),
and thus −a ∈ kerh.

The proof for imh is left as an exercise.

Exercise 2.36. Show that imh is a subgroup of H.

Exercise 2.37. For two abelian groups (G, ⋆) and (H,+), let the set of all homomor-
phisms f : G→ H be denoted by Hom(G,H).

(a) Show that (Hom(G,H),⊕), where the operation ⊕ is defined as

(f⊕ g)(x) = f(x) + g(x), ∀x ∈ G,

is also a group.

(b) Show that Hom(Z22,Z2)
∼= Z22.

As the example of the integers shows, a big motivation for the study of groups comes
from number theory. However, in number theory we do not only have addition but also
multiplication. This motivates the following definition:

Definition 2.38. (R,+, ·) is a ring, if

1. (R,+) is an abelian group.

2. ∀a, b, c ∈ R:
(a · b) · c = a · (b · c) and (Associativity of ·)
a · (b+ c) = a · b+ a · c,
(b+ c) · a = b · a+ c · a (Distributivity)
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3. ∃1 ∈ R, such that a · 1 = 1 · a = a ∀a ∈ R. (Multiplicative identity)

If · is commutative, we say that R is commutative.

Definition 2.39. A commutative ring in which every non-zero element has a multi-
plicative inverse (i.e., ∀a ∈ R \ {0}, ∃b ∈ R : a · b = 1) is called a field.

Another important area of algebra, which you already know, is linear algebra. Here,
vectors can be added and subtracted. Further the field of real numbers are called scalars
and they can be multiplied with vectors. So, we have very similar operations at hand.
This motivates the following generalization of the concept of vector spaces.

Definition 2.40. Given a ring (R,+, ·) with multiplicative identity 1, an R-module M is
an abelian group (M,⊕) with an operation ⊗ : R×M→M such that for all r, r ′ ∈ R
and x, y ∈M, we have

1. r⊗ (x⊕ y) = (r⊗ x)⊕ (r⊗ y)

2. (r+ r ′)⊗ x = (r⊗ x)⊕ (r ′ ⊗ x)

3. 1⊗ x = x

4. (r · r ′)⊗ x = r⊗ (r ′ ⊗ x)

If R is a field, the R-module is called a vector space.

In the literature, often the same symbol (·) is used for both operations · and ⊗, and
+ for both + in R and ⊕ in M. For a vector space, this should feel quite normal, since
for the vector space Rn (which is an R-module), we also write · for multiplying scalars
to both scalars and vectors, and + for addition of both scalars and vectors.

Modules appear all over the place in homology theory. In some cases, in particular
in all the cases we discuss in these lecture notes, the modules happen to be vector
spaces. Thus, most of what we discuss in the following chapters could be phrased using
only language from linear algebra. However, to be consistent with most of the existing
literature, we will phrase most results in a slightly more general language.
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Questions

1. What is a topological space? Give the formal definition and some examples.

2. What is a continuous map between topological spaces? What is a homeomor-
phism? State the definitions and give examples.

3. What is a homotopy? What is a homotopy equivalence? Give the formal
definitions. Further, define deformation retracts and use them to give an alternative
definition of homotopy equivalence.

4. What are groups and the maps between them? State the definitions and prove
that the image and kernel are subgroups.
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Chapter 3

Homology

In this chapter, we introduce homology, a fundamental concept in algebraic topology
and, as the name suggests, a crucial element of the persistent homology pipeline in
topological data analysis. Very informally, homology can be used to count the number
of “holes” of a topological space, where holes can have any dimension. While you might
have an intuition of what a 2-dimensional hole in a subspace of R2 might be, it is not
at all clear what a 4-dimensional hole in some 7-dimensional space should be. The main
idea of homology is to use algebra to talk about holes in an abstract setting.

As we have already hinted at in the previous chapter, homology is an invariant of
topological spaces preserved under homeomorphism and homotopy equivalence. We will
manage to make this formal in Section 3.2.8.

3.1 Simplicial Complexes

In order to define homology, we restrict our attention (for now) to special types of topo-
logical spaces, namely simplicial complexes. We will see that this covers most natural
spaces. Furthermore, homology for simplicial complexes is sufficient for all classical ap-
plications in topological data analysis. We will briefly outline a more general definition
later in the chapter.

While simplicial complexes can be regarded as completely abstract objects, it is more
intuitive to think of them in a geometric setting. The basic objects in a geometric
simplicial complex are simplices :

Definition 3.1. A k-simplex in Rd is the convex hull of k+1 affinely independent points
in R

d.

A face of a simplex is the convex hull of a subset of its vertices. In particular, every
face of a simplex is also a simplex. The empty set ∅ is also a face. The (k− 1)-faces of a
k-simplex are called facets. We say the dimension of a k-simplex is k.

Definition 3.2. A geometric simplicial complex is a family K of simplices such that
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• if τ ∈ K and σ is a face of τ, then σ ∈ K, and

• for σ, τ ∈ K, their intersection σ ∩ τ is a face of both.

Figure 3.1: Some examples of simplices: a point (0-dimensional), a line segment
(1-dimensional), a triangle (2-dimensional) and a (filled) tetrahedron
(3-dimensional).

Figure 3.2: The left is a simplicial complex. The right is not, as the intersection of
the two triangles is not a face of both of them.

We say the dimension of a simplicial complex is the maximum dimension of any
simplex. In these lecture notes, and for applications in topological data analysis in
general, we may assume that all simplicial complexes are finite, that is, consisting of
finitely many simplices.

The way we defined them, simplicial complexes are geometric objects. To arrive
at a purely combinatorial description, we can simply forget about the points in space
spanning our simplices.

Definition 3.3. An abstract simplicial complex K is a family of subsets of a vertex set
V(K) such that if τ ∈ K and σ ⊆ τ, then σ ∈ K.

A k-simplex here is a subset of k+ 1 elements, and thus again called k-dimensional.
Note that 1-dimensional abstract simplicial complexes are exactly graphs: they are de-
fined by a vertex set V and a system of two-element subsets of V, called edges.
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From every geometric simplicial complex we get an abstract simplicial complex by
simply taking the set of points as the vertex set and adding the correct subset for every
simplex. For the inverse direction, we have to talk about geometric realizations:

Definition 3.4. A geometric simplicial complex K is a geometric realization of some
abstract simplicial complex K ′, if there is an embedding e : V(K ′) → R

d that takes
every (abstract) k-simplex {v0, . . . , vk} in K ′ to the (geometric) k-simplex that is the
convex hull of e(v0), . . . , e(vk).

Does every abstract simplicial complex have a geometric realization? Let us only
consider 1-dimensional complexes (graphs) for now. We know that not all graphs admit
a straight-line embedding in the plane, as only planar graphs admit any embedding, i.e.,
crossing-free drawing, in the plane. However, by placing the vertices in R3 in such a way
that no four vertices lie on a common plane, we see that we can always find a geometric
realization of a graph in R3. This generalizes to the following realization theorem:

Theorem 3.5. Every k-dimensional simplicial complex has a geometric realization in
R
2k+1.

Proof. Place the vertices as distinct points on the moment curve in R
2k+1, which is

the curve given by f(t) = (t, t2, . . . , t2k+1). This way, any 2k+2 of the placed points are
affinely independent. Thus, any two faces with disjoint vertex sets will not intersect in
the realization, showing that the realization is indeed an embedding.

Since we now know that abstract and geometric simplicial complexes can be translated
into one another, we will not make the distinction between them again and just use the
word simplicial complex for both objects in the following. As a subset of Euclidean
space, a simplicial complex thus also inherits the subspace topology from R

d, which
allows us to view simplicial complexes as topological spaces. We usually write K for the
simplicial complex as a family of sets, and |K| for the underlying topological space.

On the other hand, most topological spaces are not simplicial complexes. For example,
the 2-sphere S2 is not a simplicial complex, as it is not defined by a vertex set and faces.
However, the boundary of a tetrahedron is a simplicial complex, and it is homeomorphic
to S2. Considering that we want to consider properties invariant under homeomorphism,
we thus might as well work with the boundary of a tetrahedron instead of with S2. This
motivates the following definition.

Definition 3.6. A simplicial complex K is a triangulation of a topological space X, if
|K| is homeomorphic to X. We say that a topological space X is triangulable if it has
a triangulation.

Triangulable spaces are nice for us, as we can replace them by simplicial complexes
without any loss of topological information. Unfortunately, not all topological spaces are
triangulable, but in this course we will not deal with such spaces.
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While triangulations give us simplicial complexes from (triangulable) topological
spaces, we would like to mention that one can also go the other way: many combi-
natorial structures naturally give rise to (abstract) simplicial complexes, which can in
turn be interpreted as topological spaces. Thus, we can use the machinery of topological
methods for gaining insights into many combinatorial problems. This gives rise to a sub-
field of combinatorics called topological combinatorics, where the topology of simplicial
complexes associated to combinatorial objects is studied. Let us give some examples of
such simplicial complexes.

• As we have already discussed, graphs are equivalent to 1-dimensional simplicial
complexes.

• Given a graph G = (V, E), we can define a simplicial complex on V by including
a face {v1, . . . , vk} whenever these vertices form a clique in G. This is called the
clique complex of G.

• For a poset (P,⩽), the set of all chains of P forms a simplicial complex, giving rise
to the order topology.

In topological data analysis, a highly relevant example is the nerve, which records
the intersection pattern of a collection of sets:

Definition 3.7. For a finite collection U of sets, its nerve N(U) is a simplicial complex
on the vertex set U that contains u0, . . . , uk as a k-simplex iff u0 ∩ . . . ∩ uk ̸= ∅.

While the nerve can be seen as a purely combinatorial object describing the inter-
section pattern of U, it is also interesting to study its topology. If the considered sets in
U are subsets of some topological space X, there is a very strong characterization of the
topology of N(U), if the intersections of sets in U are “well-behaved”.

Definition 3.8. Let X be a topological space, and U a finite family of closed subsets
of X. We call U a good cover, if every non-empty intersection of sets in U is
contractible.

Under these conditions on the sets we get the following, very powerful theorem,
which allows us to relate complex spaces (unions of sets) with a much simpler simplicial
complex, namely the nerve of these sets. For a proof of this we refer to any textbook on
algebraic topology, for example the one by Hatcher [2].

Theorem 3.9 (Nerve theorem). If U is a good cover, then |N(U)| is homotopy equivalent
to

⋃
U.

The nerve theorem also holds if all the sets in U are open with contractible intersec-
tions, but it may fail if some sets in U are closed, and some open: We can have an open
and a closed set which do not intersect, but whose union is connected.

Now that we have defined simplicial complexes and considered some examples, we
once again want to study maps between them. The study of simplicial complexes and
the maps between them, as we will define them, is called combinatorial topology.
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Definition 3.10. A vertex map f : V(K1) → V(K2) maps vertices in K1 to vertices in K2.

Definition 3.11. A map f : K1 → K2 is called simplicial if it can be described by a
vertex map g : V(K1) → V(K2) such that for every simplex {v0, . . . , vk} we have
f({v0, . . . , vk}) = {g(v0), . . . , g(vk)}. Since f maps to K2 we must have that f({v0, . . . , vk})
is a simplex in K2. A simplicial map can also be seen as a map on the underlying
spaces f : |K1| → |K2|.

Note that for a map to be simplicial, we do not require that {f(v0), . . . , f(vk)} is also
a k-dimensional simplex, we merely require that it is a simplex of K2. It is thus possible
that distinct vertices of K1 are mapped to the same vertex of K2.

Recall that simplicial complexes are topological spaces, so there is also the notion of
continuous maps between them. It can be shown that every simplicial map is continuous.

Exercise 3.12. Let f : |K1| → |K2| be a simplicial map. Show that f is continuous.

On the other hand, continuous maps in general do not need to map vertices to
vertices, and are thus not simplicial. Simplicial maps are therefore more restrictive than
continuous maps. However, the difference of the two concepts is smaller than one might
think at first glance.

Fact 3.13. Every continuous map f : |K1| → |K2| can be approximated arbitrarily
closely by simplicial maps on appropriate subdivisions of K1 and K2.

This shows that we can consider simplicial maps to be the analogue of continu-
ous maps in the world of simplicial complexes. This begs the question whether other
definitions from topology, such as homotopies or deformation retracts, have simplicial
analogues. As we will see in the next few definitions, they do.

Definition 3.14. Two simplicial maps f1, f2 : K1 → K2 are contiguous if for every
simplex σ ∈ K1 we have that f1(σ) ∪ f2(σ) is a simplex in K2.

This is the simplicial analogue of two continuous maps being homotopic. We can thus
show two simplicial complexes to be homotopy equivalent by providing two simplicial
maps f : K1 → K2 and g : K2 → K1 such that g ◦ f is contiguous with the identity map
on K1 and f ◦ g is contiguous with the identity map on K2.

Definition 3.15. A face of a simplicial complex is called free, if it is non-maximal (not
inclusion-maximal) and contained in a unique maximal face.

Note that every face that is a superset of a free face is either a maximal face or also
free.

Definition 3.16. A collapse is the operation of removing all faces γ that are a superset
of some fixed free face τ (including τ itself). A simplicial complex is collapsible if
there is a sequence of collapses leading to a single point.
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A collapse can be written as a deformation retract. Thus, a simplicial complex that
is collapsible is contractible, and we consider collapses to be the simplicial analogue of
deformation retracts.

You might wonder whether every contractible simplicial complex is also collapsi-
ble. We will see that this not hold: A good counterexample for this is Bing’s house
with two rooms, see Figure 3.3. In any triangulation of it, there are no free faces: As
a 2-dimensional space, there are only vertices, edges and triangles. We only have to
check edges, since triangles are maximal, and vertices are part of edges which are never
maximal. Every edge is incident to at least two triangles (there are no edges on the
“boundary”), and thus they are not free. Since we have no free faces, it is not collapsible.

Figure 3.3: Bing’s house with two rooms. Image taken from [2].

On the other hand, Bing’s house is contractible: both Bing’s house and a point are
deformation retracts of a 3-dimensional ball, and thus by Fact 2.24 they are homotopy
equivalent. For a visual sketch of the deformation retract from a 3-dimensional ball to
Bing’s house, see Figure 3.4.

To summarize, the connection between simplicial complexes and topological spaces is
that every simplicial complex defines a topological space, since we can consider a geomet-
ric embedding, and the underlying space of the embedding inherits the subspace topology
from R

d. On the other hand, some topological spaces (the triangulable ones) can be ex-
pressed by simplicial complexes. As for maps, every simplicial map is continuous. On
the other hand, continuous maps between simplicial complexes can be approximated by
simplicial maps between subdivisions of the simplicial complexes. A similar property
holds between homotopic maps and contiguous maps, as well as between deformation
retracts and collapses. In general, we can say that the terms in combinatorial topol-
ogy are special cases of their “continuous” counterparts, and if we consider triangulable
spaces, the continuous terms can be approximated in some way by their combinatorial
counterparts. The terms can thus be considered to be equivalent.

Table 3.1 summarizes the equivalent words in “continuous topology” on triangulable
spaces and in combinatorial topology on simplicial complexes.
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Figure 3.4: A visual representation of the deformation retract from a 3-dimensional
ball to Bing’s house. Images taken from the blog Sketches of topology [1].

“continuous” topology combinatorial topology
topological spaces simplicial complexes
continuous maps simplicial maps
homotopic maps contiguous maps

deformation retracts collapses

Table 3.1: Equivalent notions in “continuous” and combinatorial topology

3.2 Homology

Recall that homology is intended as a tool to count holes in objects, and recall that
this hole count is intended as an invariant of topological spaces under homotopy equiv-
alence. We have introduced simplicial complexes, which allow us to consider concrete
combinatorial descriptions instead of abstract topological spaces.

Let us begin with some basic intuition for holes in simplicial complexes, before diving
into the more technical definitions. Consider the two simplicial complexes shown in
Figure 3.5. How many (and what kind of) holes should these complexes intuitively
have?
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K1 K2

a ab b

c

c

d d

Figure 3.5: Two simplicial complexes. K1 contains all four triangles
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} as well as their subsets, while K2
only contains the three triangles {a, b, c}, {a, c, d}, {b, c, d} and their sub-
sets.

As can be seen, K1 is the boundary of a tetrahedron. It is a triangulation of the
2-dimensional (hollow) sphere, so we would like to say that it has a hole, or cavity. In
particular, because this cavity is of the same dimension as the cavity in the 2-dimensional
sphere, we want to call this cavity a 2-dimensional hole.

On the other hand, K2 can be viewed as a triangulation of four points in the plane,
where the point a lies inside the convex hull of the other three points. It is homeomorphic
to a 2-dimensional disk. Intuitively we would like to say that the complex K2 does not
have any holes.

As a 2-dimensional disk, K2 has a boundary, consisting of the edges {a, b}, {b, d}

and {a, d}. On the other hand, K1 has no boundary, just as a sphere has no boundary.
We will later define a notion of boundary capturing this intuition, at least for pure
simplicial complexes, that is, simplicial complexes whose maximal faces all have the same
dimension. For example, a 1-dimensional pure simplicial complex is just a graph with
no isolated vertices. In such a graph, the boundary will contain all the leaves (vertices
of degree 1). Some complexes, like K1, will have an empty boundary, and in analogy
to graphs without leaves we call such complexes cycles1. Under this viewpoint, our d-
dimensional holes of a simplicial complex K should be d-dimensional pure subcomplexes
that are cycles. On the other hand, clearly not all cycles should be holes, as can be seen
with the boundary of K2. This boundary (the three edges {a, b}, {b, d} and {a, d}) itself
does not have a boundary, and is thus a 1-dimensional cycle. However we do not want to
consider this cycle as a 1-dimensional hole of K2 since it is “filled up”, it is the boundary
of the three filled in triangles.

Summed up, our intuition is that holes are subcomplexes that have no boundary
(cycles) and that are not themselves boundaries of another subcomplex which would be
filling in the hole. In the following we will make this intuition precise by defining the
types of subcomplexes we consider, the notions of boundaries and cycles, and how to
mathematically describe the cycles that are not boundaries.

1Note that technically graphs without leaves are not necessarily just cycles, but can also consist of
multiple cycles glued together at vertices and edges.
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3.2.1 Chains

In the following we let K be a simplicial complex, and we use mp to denote the number
of p-simplices in K. We first want to define p-chains, which are simply an algebraic way
of formalizing and generalizing subsets of p-simplices.

Definition 3.17. A p-chain c (in K) is a formal sum of p-simplices added with some
coefficients from some ring R. A p-chain c can thus be written as

c =

mp∑
i=1

αiσi,

where αi ∈ R and σi ∈ K are p-simplices.

All we are doing in this formal sum is giving a coefficient from R to each p-simplex
of K. A formal sum is only a sum in a syntactic sense (i.e., we use the symbols +
and

∑
), but there is no semantic meaning behind this operation; there is no other way

to represent a chain other than the sum it is defined by.
Using the addition operation of the ring R however, we can now also add two p-chains

c =
∑
αiσi and c ′ =

∑
α ′
iσi (both in K). Since the chains are both just formal sums,

we can simply do this addition “component-wise”, using addition in R on the coefficients:

c+ c ′ :=

mp∑
i=1

(αi + α
′
i)σi

We therefore have an addition operation on the set Cp(K) of all p-chains in K. We
show next that Cp(K) endowed with this operation forms a group, and we call it the
p-th chain group (of K).

Observation 3.18. (Cp(K),+) is an abelian group, it is free, and the p-simplices form
a basis.

Proof. To show that it is a group we observe that:

1. Cp(K) is closed under addition, since ∀c1, c2 ∈ Cp(K) we have c1 + c2 ∈ Cp(K).

2. The operation + is associative: ∀c1, c2, c3 ∈ Cp(K),
(c1 + c2) + c3 =

∑
(α

(1)
i + α

(2)
i )σi +

∑
α
(3)
i σi =

∑
(α

(1)
i + α

(2)
i + α

(3)
i )σi =∑

α
(1)
i σi +

∑
(α

(2)
i + α

(3)
i )σi = c1 + (c2 + c3).

3. We have a neutral element 0 =
∑
0σi ∈ Cp(K).

4. Every element has an inverse: ∀c ∈ Cp(K) we have −c =
∑

(−αiσi) ∈ Cp(K) and
c+ (−c) =

∑
(αi − αi)σi = 0.
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Commutativity follows from + in R being commutative (recall that for any ring (R,+, ·),
(R,+) is an abelian group), thus the group is abelian. Finally, the p-simplices clearly form
a basis since the set of chains is defined as the set of formal sums of these p-simplices.

We can further turn Cp(K) into an R-module:

Observation 3.19. Equipped with the appropriate function · : R×Cp(K) → Cp(K), Cp(K)
is an R-module.

Proof (sketch). We can define r ·c by simply using the multiplication · of R component-
wise on each coefficient of c, i.e., r ·

∑mp

i=1 αiσi =
∑mp

i=1(r · αi)σi. We leave the proof of
the necessary properties as an exercise.

From now on we will always work with one of the simplest possible rings, the ring
R = Z2. In particular this allows us to simply view chains as sets of p-simplices, the sum
of chains being their symmetric differences, and we get the nice identity c+ c = 0. With
R = Z2, we will define homology over Z2, often also just called Z2-homology. Using
some slightly more abstract definitions, all of the following can be extended to define
homology over any ring R. For more on this, we refer to any textbook on algebraic
topology, e.g., the one by Hatcher [2].

3.2.2 Boundary Maps

Now that we can talk algebraically about sets of p-simplices, we can now formalize the
notion of the boundary. It should be intuitively clear what the boundary of a single
p-simplex should be: just take the (p− 1)-chain formed by its facets.

More formally, let σ = {v0, . . . , vp} be a p-simplex. Then, δp(σ) is defined by

{v1, . . . , vp}+ {v0, v2, . . . , vp}+ . . .+ {v0, . . . , vp−1} =

p∑
i=0

{v0, . . . , v̂i, . . . , vp}

In the above notation, v̂i denotes that the element vi is omitted from the set. Note that
δp(σ) is indeed a (p− 1)-chain. For some examples, see Figure 3.6.

δ2( ) =

3

21

+ + ≈
3

21

δ0( ) = 0

Figure 3.6: The boundary chains of two different simplices.

We have seen that δp is a map that sends a p-simplex to a (p − 1)-chain. Thanks
to the group structure of the chain group, we can now immediately extend this to any
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chain. After this extension, δp defines a map from Cp(K) to Cp−1(K):

δp : Cp(K) → Cp−1(K)

c =
∑

αiσi 7→ δp(c) =
∑

αi(δp(σi))

It is easy to prove that δ is a group homomorphism, and we call it the boundary
operator homomorphism. Let us apply this definition to the following example. In a
slight abuse of notation in favor of legibility, we denote faces {a, b, c} by abc.

d

ea
b

c

δ2(abc+ bcd) = δ2(abc) + δ2(bcd)

= (ab+ bc+ ac) + (bc+ cd+ bd)

= ab+ ac+ cd+ bd

δ2(abc+ bcd+ bce) = (ab+ bc+ ac) + (bc+ cd+ bd) + (bc+ ce+ be)

= ab+ bc+ ac+ cd+ bd+ ce+ be

We can see that an edge is in the boundary of a chain of triangles exactly if it is
contained in an odd number of triangles of the chain, thanks to the fact that we use
addition in Z2.

We have already seen that cycles can be boundaries. On the flipside we have also
seen that the boundary of a simplex should have no boundary (i.e., it should be a cycle),
where the interior of the simplex fills up the cavity given by its boundary. The following
lemma generalizes this to boundaries of any chain: It states that the boundary of any
boundary is empty.

Lemma 3.20. For p > 0, δp−1 ◦ δp(c) = 0, for any p-chain c.

In the example above, δ1(δ2(abc+ bcd)) = (a+ b) + (a+ c) + (c+ d) + (b+ d) = 0.

Proof. It is enough to show this for simplices, as δp−1 ◦ δp(c) = δp−1(
∑
αi(δp(σi))) =∑

αi(δp−1 ◦ δp(σi)). For a p-simplex σ, every (p− 2)-face of σ is contained in exactly 2
(p− 1)-faces of σ, and does thus not appear in δp−1 ◦ δp(σ).
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The notions of homology we will introduce below actually generalize to any sequence
of group homomorphisms δi that fulfill Lemma 3.20 above. Each such sequence of ho-
momorphisms defines a so-called chain complex :

0 = Ck+1(K)
δk+1−→ Ck(K)

δk−→ Ck−1(K) · · ·C2(K)
δ2−→ C1(K)

δ1−→ C0(K)
δ0−→ C−1 = 0

Cp(K) Cp−1(K) Cp−2(K)

0

Figure 3.7: A schematic illustration of a part of a chain complex.

3.2.3 Cycle and Boundary Groups

As we already established intuitively, chains without boundaries are called cycles. These
are the objects potentially giving rise to holes or cavities.

Definition 3.21. A p-chain c is a p-cycle if δ(c) = 0. Zp(K) is the p-th cycle group,
consisting of all p-cycles of K.

Lemma 3.22. Zp(K) is a group.

Proof. Zp(K) = ker δp. (Recall that the kernel of a homomorphism is a subgroup of its
domain.)

So far we have only formally defined a boundary operator, but have not specified
which chains we call boundaries. Of course, as already used implicitly before, the bound-
aries are the chains that are the result of applying the boundary operator.

Definition 3.23. A p-chain c is a p-boundary if ∃c ′ ∈ Cp+1(K) such that δ(c ′) = c.
Bp(K) is the p-th boundary group, consisting of all p-boundaries of K.

Lemma 3.24. Bp(K) is a group.

Proof. Bp(K) = im δp+1.

In the following, we will often drop the “(K)” of Cp(K), Zp(K), and Bp(K) when it is
clear which simplicial complex we are speaking about.

Fact 3.25. Bp ⊆ Zp ⊆ Cp, and all of them are abelian and free.

We will not prove this statement here, but to see that Bp ⊆ Zp, recall that by
Lemma 3.20 the boundary of a boundary is empty.
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3.2.4 Homology Groups

We are now ready to formalize the notion of holes or cavities. Recall that intuitively, a
hole is a cycle that is not a boundary, that is, not filled by something higher-dimensional.
Using that all objects defined so far form abelian groups, we can phrase this in algebraic
terms using quotient groups.

Definition 3.26. The p-th homology group Hp(K) is the quotient group Zp(K)/Bp(K).

Often in the literature we write Hp(K;R) for homology over some ring R. Since we
only work with homology over Z2 in these lecture notes, we just write Hp(K) to mean
Hp(K;Z2).

Remember that the elements of a quotient group are cosets. In essence, each element
of the homology group is a coset called a homology class which contains cycles that
differ only by boundaries. The coset [c] = c+Bp is the homology class of c. We say that
c and c ′ are homologous, if [c] = [c ′], which is equivalent to the statements c ∈ c ′ + Bp
and c+ c ′ ∈ Bp. See Figure 3.8 for an example of homologous cycles, and Figure 3.9 for
an example of the first homology group of a small complex.

c

c′

Figure 3.8: c ′ and c are homologous cycles.

K : H1(K) : {0, 123, 234, 1234} ∼= Z2
21

2

3

4

Figure 3.9: The first homology group of a small complex.

Exercise 3.27. Visualize the following simplicial complex K: 0-faces {a, b, c, d, e}, 1-
faces {ab, ac, ad, bc, bd, cd, ce, de} and 2-faces {abc, abd, acd, bcd}. For the dimen-
sions 1 & 2, what are the cycle, boundary, and homology groups of K? Note: You
can express the groups by their generators. You do not need to write out all the
elements.
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Figure 3.10: A torus.

Exercise 3.28. Give an informal derivation for the homology groups of a torus (see
Figure 3.10). Can you find a space with isomorphic homology that is not homeo-
morphic to the torus?

Exercise 3.29. For a simplicial complex K, its cone CK is the complex with the same
set of vertices plus one additional vertex z, and such that for all simplices in K we
have

{a, b, c, . . .} ∈ K =⇒ {a, b, c, . . . , z} ∈ CK

(a) Visualize a cone operation. What does it intuitively do to a complex?

(b) Show that the homology of the cone CK is 0 in all dimensions d > 0, for any
K.

(c) Bonus: What would happen (intuitively and to the homology) if we extended K
in the same way as before, but with two points? (this is called the suspension
of K)

Here are some nice properties of homology groups, that will be beneficial for us, but
that we will not prove here.

Fact 3.30.

• Hp is abelian and free.

• Hp is a Z2-vector space.

Remark 3.31. If we consider homology defined over other rings, e.g. over Z instead
of Z2, the homology groups might not be free.
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Recall that our original motivation for introducing homology was to count the number
of holes. With homology as we defined it, we have the algebraic structure of a vector
space where we can add holes together. The number of distinct holes is now just the
dimension of this vector space.

Definition 3.32. βp := dimHp = dimZp − dimBp is the p-th Betti number.

In the definition above, dim denotes the dimension of a vector space as you know it
from linear algebra, i.e., dimHp is the number of elements in a basis of Hp.

Exercise 3.33. The Euler characteristic of a simplicial complex K is defined as

χ = k0 − k1 + k2 − . . .

with ki denoting the number of i-dimensional simplices in K. Convince yourself that
this is an invariant property for all triangulations of the same topological space X.

Hint: Show instead that χ = β0(K) − β1(K) + . . .. The statement then follows by
the fact that homeomorphic spaces have the same homology.

Exercise 3.34. Take any vector v = (a0, . . . , ad) ∈ Nd+1 with a0 > 0. Show that there
exists a simplicial complex Kv with that vector as its Betti numbers.

3.2.5 Singular Homology

With our definition of homology for simplicial complexes, we get for free a notion of
homology for many topological spaces, namely the triangulable ones: we can simply
triangulate them and take the homology of the triangulation. But, a topological space
may have many triangulations, and it seems like the structure of the homology groups
might differ depending on the choice of triangulation. The aim of this section is to
sketch the tools that show that the homology of a triangulable space is independent of
the chosen triangulation. The idea of singular homology is to remove the need for a fixed
triangulation by looking at all possible simplices at once.

Let X be a topological space, and let ∆p be the standard p-simplex in Rp+1. We want
to consider all possible occurrences of this simplex in X.

Definition 3.35. A singular p-simplex is a map σ : ∆p → X.

Note that in this definition we do not require σ to be injective, thus it would even
be possible to map the simplex to a single point.

We now define Cp(X) the same way as before, but now on the family of all singular
p-simplices, which in general makes the group uncountably infinite. We also define δp
as before, defining Zp(X) and Bp(X), which are now also uncountably infinite. Finally,
we again define Hp(X) = Zp(X)/Bp(X). Surprisingly, this definition agrees with the
simplicial definition of homology on any triangulation of X.
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Theorem 3.36. Let X be a topological space, K a triangulation of X. Then we have
Hp(X) ∼= Hp(K) for all p ⩾ 0.

As isomorphisms for vector spaces are an equivalence relation, we also get the desired
independence of the triangulation.

Corollary 3.37. Let K1, K2 be two distinct triangulations of X. Then, Hp(K1) ∼= Hp(K2)
for all p ⩾ 0, that is, homology is independent of the chosen triangulation.

For the remainder of these lecture notes we will only work with simplicial homol-
ogy, but we often talk about the homology of a triangulable space without specifying a
triangulation. The above corollary gives us the right to do this.

3.2.6 The 0-th homology group

The homology group that is easiest to understand is the 0-th one. Recall that the 0-
simplices of a simplicial complex K are simply its vertices. Since vertices do not have
any boundaries, every vertex is a 0-cycle. The boundary of a 1-simplex simply consists
of the two vertices which are connected by the edge. We can thus see that two vertices
v1 and v2 are homologous if there is a path from v1 to v2, and the homology class [v1] is
simply the connected component containing v1.

Observation 3.38. β0(K) is the number of connected components of K.

As a consequence, the 0-homology classes are all the formal sums of connected com-
ponents.

3.2.7 Homology of Spheres

One of the main intuitions for us when we introduced homology was that a d-sphere
should have a single d-hole and no other holes. We will now check whether our definition
captured this intuition correctly. Since we have seen in Section 3.2.5 that homology is
independent from the chosen triangulation, let us fix some triangulation of the sphere
Sd. A good candidate (due to its simplicity) is the boundary of a simplex, that is,
Sd ≃ δ(∆d+1), with the vertex set V = {v0, . . . , vd+1}.

H0(S
d): Let us first investigate H0(Sd). Since all vertices are connected, all vertices are

homologous, and H0(Sd) = ⟨[v]⟩ ∼= Z2.

Hd(S
d): Next, let us check Hd(Sd). We first compute Zd: The d-simplices are exactly

the sets σi = {v0, . . . , v̂i, . . . , vd+1}. Note that every (d−1)-simplex occurs as the bound-
ary of exactly two such d-simplices. Thus, both the zero element (empty chain) as well
as the chain c consisting of all d-simplices are part of Zd. On the other hand, no chain
c ′ ̸∈ {0, c} can be a cycle, since for such a chain there must be some d-simplex σ ∈ c ′
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neighboring some d-simplex σ ′ ̸∈ c ′. The (d − 1)-simplex that is a boundary of both σ
and σ ′ would then be part of δp(c ′). We conclude that Zd(Sd) = ⟨c⟩.

Since δ(∆d+1) is a d-dimensional simplicial complex, and thus does not contain any
(d+ 1)-simplices, no non-empty d-chain can be a boundary. We thus get that Bd(Sd) is
the group containing only 0.

We finally get Hd(Sd) = Zd/Bd = Zd ∼= Z2.

Hp(S
d): Finally, let us go to Hp(Sd), for 0 < p < d: Let c =

∑
αiσi be a p-cycle. We

aim to show that c is homologous to the 0-chain, i.e., that [c] = [0]. Equivalently, we
show that c must be a boundary.

Let σ = (vm0
, . . . , vmp

) be any p-simplex in c which does not include v0. We will
keep replacing such simplices by simplices which do contain v0, until we have no more
simplices not containing v0.

Let b be the (p+1)-simplex (v0, vm0
, . . . , vmp

). Note that b ∈ δ(∆d+1) and thus δ(b)
is a p-boundary. Also note that σ is in δ(b). Furthermore, σ is the only p-simplex in
δ(b) which does not contain v0. We now add δ(b) to c, to get c ′ := c + δ(b). Since we
added a boundary, [c] = [c ′] (i.e., c and c ′ are homologous). Furthermore, c ′ contains
one fewer p-simplex not containing v0, when compared to c.

We repeat this process until we reach a cycle c∗ in which every p-simplex contains
v0. We now claim that c∗ must be the trivial cycle: Assume c∗ contains some p-simplex
a = (v0, va1 , . . . , vap). Then, the (p−1)-simplex a ′ = (va1 , . . . , vap) is part of δ(a). But,
a ′ cannot be part of the boundary of any other p-simplex in c∗, since the only p-simplex
containing a ′ as a face while also containing v0 is a. Thus, to have an empty boundary,
we have c∗ = 0. By construction, [c] = [c∗], therefore [c] = 0 as we aimed to prove.

We have proven that every cycle is homologous to 0, and we can conclude that for
all 0 < p < d, Hp(Sd) = 0.

Since Sd is d-dimensional, we do not have any simplices of dimensions p > d, and
thus Hp(Sd) = 0 for p > d. Combining all these arguments we conclude the following
theorem:

Theorem 3.39. For any d > 0, we have

Hp(S
d) =

{
Z2 p ∈ {0, d}

0 else.

βp(S
d) =

{
1 p ∈ {0, d}

0 else.

3.2.8 Induced Homology

As usual, now that we have defined some mathematical objects (homology groups) we
are also interested in the maps between them. For simplicial complexes we have defined
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simplicial maps, and we now want to study the effect that simplicial maps have on the
homology of a space.

We first extend simplicial maps to the chain groups.

Definition 3.40. Let f : K1 → K2 be a simplicial map. This induces a chain map

f# : Cp(K1) → Cp(K2)

c =
∑

αiσi 7→ f#(c) :=
∑

αiτi, where τi =

{
f(σi) if f(σi) is p-simplex in K2
0 otherwise

Note that f(σi) is always a simplex in K2 since f is a simplicial map, but it could be a
simplex of smaller dimension. This is why we need the condition in the above definition
of τi.

The following can be shown with a bit of work:

• f# ◦ δ = δ ◦ f#

• f#(Bp(K1)) ⊆ f#(Zp(K1))

• f#(Zp(K1)) ⊆ Zp(K2), f#(Bp(K1)) ⊆ Bp(K2)
From this chain map f#, we now get a well-defined induced homomorphism between

the homology groups of K1 and K2.

Definition 3.41. Let f be a simplicial map and f# its induced chain map. This induces
a homomorphism

f∗ : Hp(K1) → Hp(K2)

[c] = c+ Bp 7→ f#(c) + Bp(K2) = [f#(c)].

Fact 3.42. If Hp(K1) and Hp(K2) are vector spaces (as they are in e.g. Z2-homology,
which is what we are using), then f∗ is a linear map.

We also get the following functorial property, which we will not prove.

Fact 3.43. For two simplicial maps f : X→ Y, g : Y → Z, we have (g ◦ f)∗ = g∗ ◦ f∗.
Let us compute the induced homomorphism of a small example:

da

c

da b

c

K1 K2

b

We consider the inclusion map f : K1 ↪→ K2.

H1(K1) = {0, [abc], [bcd], [abdc]} ∼= Z22

f∗(0) = 0, f∗([abc]) = [abc]

f∗([bcd]) = 0, f∗([abdc]) = [abc]
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Exercise 3.44. Let

K1 = {∅, a, b, c, d, e, ab, ac, bc, bd, cd, ce, de, abc}

and

K2 = {∅, w, x, y, z,wx,wy, xy, xz, yz}.

Consider the map f : K1 → K2 induced by the vertex map

a 7→ y, b 7→ x, c 7→ y, d 7→ z, e 7→ z.

You can verify easily that f is simplicial. Compute f∗ : Hp(K1) → Hp(K2) for
0 ⩽ p ⩽ 2.

Exercise 3.45. Which of the following four statements is true for every simplicial
map f?
“If f is {injective, surjective}, then f∗ is {injective, surjective}.”

The following fact has some very powerful consequences, as we will see.

Fact 3.46. If f, g : K1 → K2 are contiguous, f∗ = g∗.

Note that the definition of induced homology extends from simplicial maps to maps
between any topological spaces. We will not state the exact definitions, but the following
fact is the continuous analogue (remember that two simplicial maps being contiguous is
analogous to two maps being homotopic) of Fact 3.46.

Fact 3.47. If f, g : X→ Y are homotopic, f∗ = g∗.

Thanks to this fact we get the following corollary, which shows that homology is
indeed an invariant under homeomorphisms, and even under homotopy equivalence.
This also gives us the option to compute the homology of a space by computing the
homology of a potentially simpler homotopy equivalent space.

Corollary 3.48. If f : X → Y is a homotopy equivalence (i.e., there exists g : Y → X

such that f ◦ g is homotopic to idY and g ◦ f is homotopic to idX), then f∗ is an
isomorphism.

Proof. Thanks to Fact 3.43 we have (g ◦ f)∗ = g∗ ◦ f∗. By Fact 3.47, (g ◦ f)∗ = (idX)∗,
which is an isomorphism. Since we thus know that g∗◦f∗ is an isomorphism, we know that
f∗ must be injective and g∗ must be surjective. By a symmetric argument considering
f ◦ g we also get that f∗ is surjective and g∗ is injective, and thus both f∗ and g∗ are
isomorphisms.

Exercise 3.49.

Consider the space you get when you glue together two points of a torus. What is
the homology of this space?
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Consider the space you get when you simultaneously pierce a balloon at n distinct
locations. What is the homology of this space?

Exercise 3.50. Let f, g : S1 → S1 be continuous maps such that f(−x) = f(x) and
g(−x) = −g(x) for all x ∈ S1.

a) Convince yourself that f∗ : H1(S
1) → H1(S

1) is trivial (maps everything to 0)
and that g∗ is an isomorphism.

b) Show that f and g are not homotopic.

c) Show that there is no map h : S2 → S1 such that h(−x) = −h(x).

d) Conclude that every map ϕ : S2 → R
2 with ϕ(−x) = −ϕ(x) has a zero.

The statement you have proven in d) is equivalent to the 2-dimensional case of
the famous Borsuk-Ulam theorem, which implies statements such as “at any time,
there are two antipodal points on the earth with both the same temperature and
atmospheric pressure”.

3.2.9 Application: Brouwer Fixed Point Theorem

In this section we finally collect the fruits of our hard work by using homology to give a
relatively short proof of the famous fixed point theorem by Brouwer. Here, Bd denotes
the unit ball of dimension d.

Theorem 3.51 (Brouwer fixed point theorem). Let f : Bd → Bd be continuous. Then, f
has a fixed point, that is, ∃x ∈ Bd such that f(x) = x.

This theorem has many fascinating implications:

• Take two sheets of paper lying on top of each other. Crumple the top sheet and
set it back onto the other sheet. No matter how you crumpled the sheet, at least
one point of the crumpled sheet lies exactly above its corresponding point in the
bottom sheet.

• If you open a map of Switzerland in Switzerland, there is at least one point on the
map which is at its exact position.2

• If you take a cup of liquid and stir or slosh it, at least one atom ends up at its
original position (but if you shake you might break continuity).

• The theorem also has many applications in mathematics and computer science,
such as in fair divisions or for proving existence of Nash equilibria.

2The theorem only applies when ignoring the Italian and German exclaves of Campione d’Italia and
Büsingen am Hochrhein.
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To prove Theorem 3.51, we first introduce the following definition and a helper lemma,
which we only prove after proving Theorem 3.51 itself.

Definition 3.52. A map r : X→ A ⊆ X is a retraction if r(a) = a, ∀a ∈ A.

Lemma 3.53. There is no retraction r : Bd → Sd−1.

Proof of Theorem 3.51. We prove the theorem by contradiction. For an illustration
of the argument see Figure 3.11. Assume f : Bd → Bd has no fixed point. For each
x, consider the ray

−−−→
f(x)x and let r(x) be the intersection of this ray with Sd−1. Then,

r : Bd → Sd−1 is continuous (which we do not prove here) and r(s) = s ∀s ∈ Sd−1, since
no matter where f(s) lies,

−−→
f(s)s first intersects Sd−1 in s. Thus, r is a retraction, which

does not exist by Lemma 3.53.

x
r(x)

f(x)

Figure 3.11: If f has no fixed point, we get a retraction to the boundary.

It remains to prove the helper lemma.

Proof of Lemma 3.53. Consider the inclusion map i : Sd−1 ↪→ Bd, and a retraction
r : Bd → Sd−1. By definition, we have r ◦ i = id . Let us look at the induced maps
of r and i in the (d − 1)-th homology of Sd−1 and Bd. Recall that Hd−1(Sd−1) ∼= Z2
and Hd−1(Bd) ∼= 0. We thus view i∗ as a homomorphism from Z2 to 0, and r∗ as a
homomorphism from 0 to Z2. But since r ◦ i = id, we also have r∗ ◦ i∗ = id. We can
combine this to reach a contradiction:

1 = id(1) = (r∗ ◦ i∗)(1) = r∗(i∗(1)) = r∗(0) = 0

Thus, either i or r cannot exist, but since i exists, r cannot.
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Questions

5. What is a simplicial complex? Define geometric and abstract simplicial com-
plexes and state and prove the realization theorem (Theorem 3.5).

6. What are simplicial and contiguous maps? State the definitions and discuss the
connection to their counterparts in continuous topology.

7. Is every contractible simplicial complex collapsible? Define the notion of col-
lapsibility and describe Bing’s house with two rooms.

8. What is simplicial homology? Explain the intuition and give the formal defini-
tions of chains, boundaries and cycles.

9. Why is the homology of a triangulable space independent of the chosen trian-
gulation? Explain the idea of singular homology.

10. What are the homology groups of a sphere? State and prove the corresponding
theorem (Theorem 3.39).

11. How does a simplicial map between two simplicial complexes induce maps
between their homology groups? Define induced homomorphisms.

12. What is the Brouwer fixed point theorem? State, illustrate and prove the
Brouwer fixed point theorem (Theorem 3.51).
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Chapter 4

Persistence

In the previous chapter, we have studied the homology of fixed simplicial complexes. In
this chapter, we will look at simplicial complexes that grow over time. Let us start with
a small example. Consider the following process of building up a triangle abc. At time
t1, we add the vertices a and b together with the edge ab. This gives birth to a single
connected component. At time t2 we add the vertex c, giving birth to a second connected
component. At time t3 we add the edge ac, connecting the two components. We can
interpret this as the younger of the components being absorbed by the older component.
In more crude language, we say that the younger component dies. At time t4 we add the
final edge bc, which gives birth to a hole, that is, an element of the homology group H1.
Finally, at time t5 we add the interior of the triangle, killing the hole born at t4. We
can summarize this process as follows: we have a connected component that was born
at t1 and survived the entire process, and a connected component that was born at t2
that died again at t3. Finally, we have a hole born at t4 dying at t5. Capturing this
information of holes with their birth and death is the goal of persistent homology.

Persistent homology can be applied to data analysis by defining (in a way that we will
see soon) a process to build up a simplicial complex from point cloud data and computing
the birth and death times of holes. Subtracting the birth time from the death time we
get the lifespan of a hole; the underlying idea is that holes with a short lifetime are a
byproduct of the process (noise), whereas holes with a long lifespan convey information
about the shape of the underlying data.

4.1 Filtrations

We start by a mathematical formulation of the process of growing a simplicial complex
or, more general, a topological space. A filtration is a nested sequence of subspaces

F : X0 ⊆ X1 ⊆ X2 ⊆ . . . ⊆ Xn = X.

For each i ⩽ j, we have the inclusion map ιi,j : Xi ↪→ Xj. Given these functions ι,
we get induced maps in homology: hi,jp = ι∗ : Hp(Xi) → Hp(Xj). Filtrations are a very
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general object that appear naturally in many settings. Let us look at some important
examples of filtrations.

• Given a function f : X → R, we can define the (uncountably infinite) sublevel set
filtration Xa = f−1(−∞, a].

• A simplicial filtration is a nested sequence of subcomplexes

F : K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.

We call a simplicial filtration simplex-wise, if Ki \ Ki−1 is a single simplex (or
empty).

• We call a function f : K → R simplex-wise monotone if for every σ ⊆ τ we have
f(σ) ⩽ f(τ). A simplex-wise monotone function guarantees us that the sublevel set
filtration by f gives a proper simplicial filtration. Note that it does not necessarily
guarantee us that the sublevel set filtration is simplex-wise (e.g., consider a function
f that is not injective).

• We can also define a simplicial filtration by ordering our vertices v0, v1, . . . , vn.
Then, let Ki be the simplicial complex induced by the vertices v0, . . . , vi. We call
the simplices Ki \Ki−1 added when adding vi the lower star of vi. Thus, this type
of filtration is also called the lower star filtration.

• Given some data points in Rd, we can define a filtration based on our intuition of
growing balls : We consider the nerve of all balls B(p, r); with growing r we get
more and more faces in this nerve. We will later formalize this into the so-called
Čech complex.

4.2 Persistent Homology

As we have seen, from a filtration X0 ⊆ X1 ⊆ . . . ⊆ Xn we get a sequence of homology
groups with homomorphisms between them:

Hp(F) : Hp(X0) → Hp(X1) → Hp(X2) → . . .→ Hp(Xn).

Such an object is called a persistence module. Given a persistence module, we can now
define groups that capture all the holes that are alive during a certain period.

Definition 4.1. The p-th persistent homology group Hi,jp is defined by

Hi,jp := imhi,jp = Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)).

This definition characterizes the cycles that that are present already in Ki and that
are not boundaries even in Kj.
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· · ·

Hp(Ki−1) Hp(Ki) Hp(Kj−1) Hp(Kj)

[c]

Figure 4.1: An illustration of a class [c] being born at Ki and dying entering Kj.

Definition 4.2. The p-th persistent Betti numbers βi,jp are the dimensions of the p-th
persistent homology groups: βi,jp = dimHi,jp .

Exercise 4.3. Let p ⩾ 1. For every n ⩾ 1, construct a filtration X1 ⊆ X2 ⊆ . . . ⊆ Xn
such that

• Hp(Xk) ̸= 0 for all k ∈ {1, . . . , n} and

• Hi,jp = 0 for all i < j.

We say that a p-homology class [c] (a p-hole) is born at Ki if [c] ∈ Hp(Ki) but
[c] ̸∈ Hi−1,ip . Similarly, [c] dies entering Kj, if [c] ̸= 0 in Hp(Kj−1) but hj−1,jp ([c]) = 0.

It is not always obvious which homology class dies. Consider the following filtration:
X1 consists of two points a and b, and in X2 the two points are connected by an edge.
Let us look at H0, that is, the connected components. We have that H0(X1) ≃ Z22, with
the natural basis {[a], [b]}. On the other hand, in X2 there is only a single connected
component, and [a] = [b]. So a homology class is dying, but both our basis elements [a]
and [b] survive. What is happening?

It turns out that we were not careful with our choice of basis: H0(X1) can also be
viewed as being generated by [a] and [a+b], and the class [a+b] indeed dies going into
X2. In general, if two homology classes merge, they both do not die, but their sum does.
There is a consistent choice of basis which allows us to only look at persistent homology
in terms of basis elements, but we do not go into this at this point.

If we have a simplex-wise filtration, we can circumvent the above issue by sorting
homology classes by the time where they were born (recall the solution to Exercise 3.33
to see why this gives a total order). When two classes merge, we just say the “younger
one” dies. This can be seen as adapting the considered basis along the way.

Persistence pairings are another way around this issue. We add some final complex
Kn+1 which has trivial homology (i.e., by adding all simplices that are not yet present).
Then, we aim to figure out how many holes get born at Ki and die entering Kj. For this,
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t1 t2 t3 t4 t5

H0

H1

t1 t2 t3 t4 t5

∞

t5

t4

t3

t2

t1

t1 t2 t3 t4 t5

∞

t5

t4

t3

t2

t1
Dgm0(F) Dgm1(F)

F :

Figure 4.2: An example of a filtration with the corresponding barcodes and persistence
diagrams.

we define

µi,jp := (βi,j−1p − βi,jp ) − (βi−1,j−1p − βi−1,jp ), for i < j ⩽ n+ 1.

Here, the content of the left parenthesis denotes the number of holes born at or before
Ki, which die entering Kj. Conversely, the right parenthesis denotes the number of holes
born strictly before Ki, and die entering Kj. Thus, subtracting the two, gives the number
of holes born exactly at Ki and die entering Kj. Note that this conveys the information
that we are interested in, but does not require choosing any basis.

The persistence diagram Dgmp(F) is a birth-death diagram which contains a point
for every pair i, j for which µi,jp > 0. If we give each Ki a timestamp ai, the point is drawn
at the coordinates (ai, aj). We give each point multiplicity µi,jp . On the diagonal we add
points with infinite multiplicity, for some technical reasons that will become apparent
later. We can also represent the same information by barcodes : For every i, j, we draw
µi,jp intervals [ai, aj]. This is then called the p-th persistence barcode.

Exercise 4.4. Consider the simplex-wise filtration induced by the order σ1, . . . , σN on
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the simplices of a complex K. When does the order

σ1, . . . , σk−1, σk+1, σk, σk+2, . . . , σN

induce a simplex-wise filtration too? When it does, describe the relation between
the corresponding persistence diagrams.

Exercise 4.5. Give two filtrations X1 ⊆ . . . ⊆ Xn and Y1 ⊆ . . . ⊆ Yn that have the
same persistence diagrams but for which for any i ∈ {1, . . . , n}, Xi is not homotopy-
equivalent to Yi.

4.3 Algorithms for Persistent Homology

So far we have considered homology and persistent homology only on a mathematical
level. However, for practical applications we are interested in actually computing homo-
logical information. In this section we discuss how we can compute persistence pairings
given simplicial filtrations. This will of course also allow us to compute persistence
diagrams and persistence barcodes.

4.3.1 Persistence Pairing Algorithm

The first algorithm we consider is the so-called persistence pairing algorithm. It only
works on simplex-wise filtrations, we thus restrict our attention to such filtrations. In
any time step j, we add a single simplex σj := Kj \ Kj−1. Let p be its dimension. There
are only two things that can happen to the homology when adding σj: Either, a new
non-boundary p-cycle c (i.e., a hole) is born, or a (p−1)-cycle becomes a boundary (i.e.,
a hole dies). In the first case we say that σj is a creator. Otherwise, we say that σj
is a destructor. The fact that in every step exactly one of the two events happens is a
consequence of the Euler characteristic, as discussed in Exercise 3.33.

When a new simplex σj destroys a hole, this corresponds to an interval of the persis-
tence barcode ending. The beginning of that interval is at the time step when this hole
was born, which corresponds to a unique simplex (recall, we are considering simplex-wise
filtrations only). This unique simplex must be a creator, since when it was inserted a
hole was born. The idea of the persistence pairing algorithm is to form pairings between
destructors and creators. To do this, the algorithm assumes the newly added simplex σj
to be a destructor, and tries to find the corresponding unpaired creator using a simple
heuristic. If no such creator can be found by the procedure, we know that σj must
actually be a creator itself.

The heuristic is quite simple to describe. We have to look for an unpaired creator
only within a cycle c that becomes a boundary due to the insertion of σj. Among this
cycle c, we wish to pair σj with the youngest unpaired creator. Any such cycle c must
be homologous to δσj, which is the simplest candidate for such a cycle c. This is thus
where the search begins. We first try to pair σj with the youngest (p − 1)-simplex ρ of
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its boundary. If ρ is unpaired, we pair it to σj and we are done. Otherwise, ρ is already
paired with some (p-simplex) τ. In this case we replace c by c+ δτ. This is now a new
candidate cycle, in which we can try pairing σj to the youngest simplex. We repeat this
process until we found an unpaired creator we can pair σj to, or until we cannot continue
because c = 0. In this case we label σj as a new creator. At the end of the algorithm
(after processing all steps of the filtration), all remaining unpaired creators correspond
to holes present at the last step of the filtration, and we pair them with the element ∞.

We refrain from giving a complete proof of this algorithm’s correctness. Such a proof
can be found in [1], however the algorithm presented there is slightly more complex and
more efficient. We would only like to note that when we label a simplex a creator that
this is correct to do so: If we reach c = 0 we know that the boundary of σj is homologous
to 0 (we obtained 0 by adding boundaries to δσj). Thus, σj cannot be a destructor. We
can thus safely label σj as a new creator.

We summarize this algorithm in the following pseudocode:

Algorithm 1: The persistence pairing algorithm.
Input: A simplex-wise filtration of K given by an order of simplices σ1, . . . , σN
for j = 1 to n do
c := δσj;
while c ̸= 0 do
i := largest integer such that σi ∈ c and σi is creator;
ρ := σi;
if ρ is unpaired then

Label σj as destructor and pair ρ and σj;
c := 0

else
τ := simplex ρ is paired to;
c := c+ δτ;

end
end
if σj has not been labelled a destructor then

Label σj a constructor;
end

end
Pair all unpaired constructors with ∞;

Exercise 4.6. Let G be a weighted connected graph, where all edge weights are pairwise
distinct. Consider a filtration that first inserts all vertices (in some arbitrary order)
and then inserts the edges one by one, ordered by increasing weight. What is the
set of destructors?
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4.3.2 Matrix Reduction Algorithm

In practice, a different algorithm is used, the Matrix Reduction Algorithm. This algo-
rithm implements the same intuition as the persistence pairing algorithm. It has a few
advantages: First off, it is more efficient (it avoids the need to add the same boundaries
multiple times, similarly to the version of the persistence pairing algorithm provided
in [1]). Second, it is phrased in the language of matrices, which allows us to implement
it more efficiently using matrix-multiplication techniques. Lastly, the way we describe it
in the following it also works with non-simplex-wise filtrations.

In the matrix reduction algorithm, we first find a total order on our simplices. If
the input filtration is simplex-wise, this is just the insertion order. Otherwise, we order
the simplices primarily by insertion order, and within each set of simultaneously added
simplices, we order the simplices by increasing dimension, and then lexicographically.
Then, we construct an N×N matrix, which is the so-called boundary matrix. Each row
and column is labelled by a simplex, ordered by the order we defined above. We then
insert a 1 at row σ and column τ, if σ is part of the boundary of τ.

We now modify this boundary matrix to obtain the reduced boundary matrix, from
which the persistence pairings can then be read off. We process the columns from left
to right. For each column c, we look at the lowest 1 in the column. We call this 1 the
pivot element of the column. If there is a column c ′ < c to the left that also has a pivot
element in the same row, we add c ′ to c (in Z2). This is repeated until no such column
c ′ < c exists.

After processing all the columns, the matrix is in a reduced form: For every row, there
is at most one column whose lowest 1 (its pivot element) lies in that row. From this we
can now read the persistence pairings: Empty columns correspond to creators (births).
To find the death of a creator, look at its corresponding row, and search for a column
that has a pivot element in that row. This column is the destructor corresponding to
the creator. If there is no such column, this creator never dies, i.e., is unpaired or paired
with ∞.

We again summarize this algorithm in the pseudocode below. Let us now analyze at
the runtime of this algorithm. For each column (O(N)), we might have to add O(N)
times a column, and each addition takes O(N). So, by this very rough analysis we
have a runtime of O(N3). But, since the reduction process is very similar to Gaussian
elimination, we can actually perform the reduction using techniques that yield a runtime
of O(Nω), where ω is the matrix-multiplication exponent. However, in practice this is
not very useful since efficient matrix-multiplication algorithms are very complex and have
large constants, while the naive implementation runs in essentially O(N) time anyways
since the involved matrices are so sparse.

Exercise 4.7. Consider the following simplicial complex, and the simplex-wise filtra-
tion which first inserts the vertices in the order a, b, c, d, e, and the rest of the
simplices as specified by the numbering in Figure 4.3.

Execute both the persistence pairing algorithm and matrix reduction algorithm
on this filtration. What are the similarities and differences in the algorithms? To
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Algorithm 2: The matrix reduction algorithm.
Input: A filtration of K.
Find an ordering σ1, . . . , σN corresponding to a simplex-wise filtration of K
consistent with the given filtration;
M := 0N×N;
for 1 ⩽ i, j ⩽ N do

if σi ∈ δσj then
Mij := 1;

end
end
for j = 1 to n do
ℓ := max({−1} ∪ {i |Mij = 1});
while ℓ ̸= −1 and ∃j ′ < j such that ℓ = max({−1} ∪ {i |Mij ′ = 1}) do
M·j :=M·j +M·j ′;
ℓ := max({−1} ∪ {i |Mij = 1});

end
end
for j = 1 to n do

if M·j = 0
N then

Label σj a constructor;
for j ′ = 1 to n do

if j = max({−1} ∪ {i |Mij ′ = 1}) then
Pair σj to σj ′;
Label σj ′ a destructor;

end
end

end
end
Pair all unpaired constructors with ∞;
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better see what happens, label the columns in the matrix by the sum of columns
they currently represent.

Represent the results you obtained by a persistence diagram, and also by the
persistence barcodes.

a b

cd

e 6

7

8

910

11

12
13

14

Figure 4.3: The filtration for Exercise 4.7.

Exercise 4.8. A Union-Find data structure is a data structure that maintains disjoint
sets dynamically. Given a ground set X, such a data structure maintains a family
S of disjoint subsets of X, where each subset is represented by the smallest element
contained in it. It supports three operations: MakeSet(x) creates a new set {x}.
FindSet(x) returns the representative (minimum) of the set in S which contains x
(or “no” if x is not contained in any set). Union(x, y) merges the sets containing x
and y into a single one. All of these operations can be implemented in amortized
Θ(α(n)) time, where α is the extremely slowly growing inverse Ackermann function
and can be considered a constant for any real world application.

Consider a simplicial complex K with its vertices ordered v0, . . . , vn, and consider
its lower star filtration. Find an algorithm to compute the 0-dimensional persistence
diagram (i.e., the persistence pairings) of K which makes use of a Union-Find data
structure. How many Union-Find operations do you need to perform?

Questions

13. What is a filtration? State the definition and describe different ways how filtra-
tions appear in topology and data analysis.

14. What is persistent homology? State the formal definitions and give examples.

15. How can persistent homology be computed? Discuss the two algorithms de-
scribed in Section 4.3.
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Simplicial Complexes on Point Clouds

In general, the data we wish to analyze will not come in the form of a simplicial filtration,
so in order to use persistent homology we need to transform our data into one. Ideally,
the way we do this should retain the underlying shape of the data we want to analyze.
In this section we discuss several ways of constructing simplicial complexes from point
cloud data, and more generally, from finite metric spaces (i.e., a finite set of data points
with given pairwise distances).

5.1 Čech and Vietoris-Rips complexes

Definition 5.1. Given a metric space (M,d), a finite point set P ⊆ M, and a real
number radius r > 0, the Čech complex Cr(P) is defined as the nerve of the set of
balls B(p, r) = {x ∈M | d(p, x) ⩽ r} for all p ∈ P.

The Čech complex has the nice property that (at least for some metric spaces M
including Euclidean space Rd) by the Nerve theorem, it is homotopy equivalent to the
union of the balls B(p, r). In particular, for nice radii, it will capture the underlying
shape. Sadly, checking whether a large number of balls have a common intersection can
be computationally expensive. Further, the definition requires that the data points are
embedded in a metric space. These two issues motivate the next definition.

Definition 5.2. Given a finite metric space (P, d) and a real number radius r > 0,
the Vietoris-Rips complex VRr(P) is defined as the simplicial complex containing a
simplex σ if and only if d(p, q) ⩽ 2r for every pair p, q ∈ σ.

Clearly, for finite subsets of metric spaces, by definition, the Čech complex and the
Vietoris-Rips complex for the same radius and the same point set have the same set
of 1-simplices (the same 1-skeleton). While the Čech complex then contains additional
information about the common intersections of balls, the Vietoris-Rips complex is simply
the clique complex of this 1-skeleton. This makes the Vietoris-Rips complex easier to
compute. Furthermore, we make the following simple observation, showing that the
Vietoris-Rips complex still approximately captures shapes in the data:
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Observation 5.3. Cr(P) ⊆ VR
r(P) ⊆ C

2r(P).

Exercise 5.4. Prove Observation 5.3.

Exercise 5.5. Find a point set P ⊂ R
2 and a radius r such that its Vietoris-Rips

complex has non-trivial 2-homology, i.e., such that H2(VRr(P)) ̸∼= 0.
Furthermore, is there a dimension k such that Hk ′(VRr(Q)) = 0 for all k ′ ⩾ k, all
r > 0, and all point sets Q ⊂ R

2?

5.2 Delaunay and Alpha complexes

Recall that computing persistent homology takes O(N3) time, where N is the size of
the simplicial complex in the filtration. For large enough radii, both the Čech and the
Vietoris-Rips complex become complete, and thus contain 2n simplices. Computing
persistent homology using those complexes is therefore computationally very expensive,
which is why in many applications we would like to have sparser complexes. For data
in Rd we can look at the so-called Delaunay triangulation, which only has complexity
O(n⌈d/2⌉).

Definition 5.6. Given a finite point set P ⊂ R
d, a Delaunay simplex is a geometric

simplex whose vertices are in P and lie on the boundary of a ball whose interior
contains no points of P.

A Delaunay triangulation Del(P) of P is a geometric simplicial complex with the
vertex set P where every simplex is a Delaunay simplex and whose underlying space
covers the convex hull of P.

Given a finite point set P ⊂ R
d, the extended Delaunay complex is the simplicial

complex where for every face σ, for d ′ ⩽ d, every d ′-face of σ is a Delaunay simplex.

It is a well-known fact that for a point set in general position (no d+ 2 points lie on
a common sphere), there is a unique Delaunay triangulation. Furthermore, in this case
the extended Delaunay complex and this unique Delaunay triangulation coincide.

Definition 5.7. Given a finite point set P ⊂ R
d, the Voronoi diagram is the tessellation

of Rd into the Voronoi cells

Vp = {x ∈ Rd | d(x, p) ⩽ d(x, q)∀q ∈ P}

for all p ∈ P.

Fact 5.8. The nerve of the Voronoi cells of P is the extended Delaunay complex of P.

Exercise 5.9. Convince yourself that for a point set in R
2, the nerve of the Voronoi

diagram is the extended Delaunay complex. Furthermore, convince yourself that if
the points are in general position (there are no three points that are collinear, and
no four points that are cocircular), then there is a unique Delaunay triangulation.
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Based on the Delaunay triangulation, we define the Alpha complex by parameterizing
using a radius as follows:

Definition 5.10. Given a finite point set P ⊂ R
d in general position as well as a real

number radius r > 0, the Alpha complex Delr(P) consists of all simplices σ ∈ Del(P)
for which the circumscribing ball of σ has radius at most r.

The following fact provides us with an alternative definition of the Alpha complex:

Fact 5.11. The Alpha complex Delr(P) is the nerve of the sets B(p, r) ∩ Vp for all
p ∈ P.

Since the Alpha complex is a subset of the Delaunay triangulation (and for large
enough radius is equal to the Delaunay triangulation), it also has complexity O(n⌈d/2⌉).
Further, the above fact together with the Nerve theorem implies that the Alpha complex
Delr(P) is homotopy equivalent to the Čech complex Cr(P).

Exercise 5.12. Is the following true or false? Consider a point set P ⊂ R
2 in gen-

eral position and a radius r > 0. Then the Alpha complex (with radius r) is the
intersection of the Čech complex (with radius r) with the Delaunay triangulation.

5.3 Subsample Complexes

For many applications, the Alpha complex is still too large. It is further expensive to
compute, as computing a Delaunay triangulation in Rd takes O(n⌈d/2⌉) time. Sparser
complexes can be constructed by looking at subsamples of the data, and relating the
rest of the data to these subsamples. In the following, we will discuss two examples of
complexes based on this idea.

Definition 5.13. Given a finite point set Q and a point set P ⊃ Q in some metric space,
we say that a simplex σ ⊆ Q is weakly witnessed by x ∈ P \ Q, if d(q, x) ⩽ d(p, x)
for every q ∈ σ and p ∈ Q \ σ.

Note that the set of weakly witnessed simplices is not downwards closed. We thus
define a simplicial complex by requiring that all faces are weakly witnessed:

Definition 5.14. The Witness complex W(Q,P) is the collection of simplices on Q for
which every face is weakly witnessed by some point in P \Q.

Note that if we take the metric space Rd and we let P be the whole Rd, thenW(Q,P) =
Del(Q), and by definition we thus get in general that W(Q,P) ⊆ Del(Q).

To arrive at a filtration, we again have to introduce a parameter r > 0:

Definition 5.15. Given a finite point set Q and a point set P ⊃ Q in some metric space
as well as a real number radius r > 0, the parameterized Witness complex Wr(Q,P)
is defined as follows:
An edge pq is in Wr(Q,P) if it is weakly witnessed by x ∈ P \Q and d(p, x) ⩽ r and
d(q, x) ⩽ r. A simplex σ is in W

r(Q,P) if all its edges are.
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Note that from this definition it is not guaranteed that the parameterized Witness
complex is a subcomplex of the Witness complex.

The idea of the parameterized Witness complex is that it should approximate the
Vietoris-Rips complex on P. There are theoretical guarantees about this approximation
for manifolds of dimension at most 2, but the parameterized witness complex may fail
to capture the topology of manifolds in dimension 3 and above.

Let us now consider a second subsample complex, the graph induced complex.

Definition 5.16. Given two finite point sets Q,P in R
d, as well as a graph G(P) with

vertices in P, we define v : P → Q by sending each point in P to its closest point in
Q. The graph induced complex G(Q,G(P)) contains a simplex σ = {q0, . . . , qk} ⊂ Q

if and only if there is a clique {p0, . . . , pk} in G(P) for which v(pi) = qi.

We again parameterize this:

Definition 5.17. Let Gr(P) be the graph on P where pq is an edge if and only if d(p, q) ⩽
2r. The parameterized graph induced complex Gr(Q,P) is defined as G(Q,Gr(P)).

This complex again has theoretical guarantees of approximating the Vietoris-Rips
complex on P ∪Q.

Exercise 5.18. Let P,Q be point sets and G(P) a graph with P as its vertex set. Let
v : P → Q be the map sending each point of P to its closest point of Q (assume
that this closest point is always unique). Let C be the clique complex of G(P) (the
complex which includes a simplex iff its corresponding vertices in G(P) form a
clique).

Show that v extends to a simplicial map v̄ : C→ G(Q,G(P)). Also show that any
simplicial complex K with V(K) = Q for which v has a simplicial extension must
contain G(Q,G(P)).

Questions

16. What are the Čech and Vietoris-Rips complexes? Give the definitions, discuss
their size and theoretical guarantees, and how they are related.

17. What are the Delaunay and Alpha complexes? Give the definitions, discuss
their size and theoretical guarantees, and how they are related.

18. What is the Witness complex? State the Definition and describe how it relates
to the non-sparse complexes.

19. What is the Graph induced complex? State the Definition and describe how it
relates to the non-sparse complexes.
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Chapter 6

Distances and Stability

6.1 Distance Metrics on Persistence Diagrams

In this section we will define some distance metrics that can be used to compare different
persistence diagrams.

6.1.1 Bottleneck Distance

Let F,G be two filtrations giving rise to persistence modules HpF, HpG. Let Dgmp(F)
and Dgmp(G) be their corresponding persistence diagrams. These diagrams are the
information we want to use to compare F and G.

The general idea of the bottleneck distance is to pair up points of the two persistence
diagrams, i.e., consider bijections between points of Dgmp(F) and Dgmp(G). Since we
can only find bijections between sets of the same cardinality, we need the two diagrams to
have the same number of points. This is where the definition of the persistence diagram
comes in: recall that a persistence diagram includes every possible point on the diagonal
with infinite multiplicity. Thus, both sets of points have the same (infinite) cardinality,
and bijections between these sets are thus well-defined.

To measure the “quality” or “distance” of such a bijection, we use the L∞-norm:

Definition 6.1. Let x = (x1, x2), y = (y1, y2) be two points in R
2. Then,

||x− y||∞ := max(|x1 − y1|, |x2 − y2|),

where we say that ∞ −∞ = 0 for points with coordinates that are ∞ (i.e., points
in persistence diagrams that correspond to holes that did not die).

Definition 6.2. Let Π = {π : Dgmp(F) → Dgmp(G) | π is bijective} be the set of all
bijections between Dgmp(F) and Dgmp(G). Then, the Bottleneck distance is defined
as

db(Dgmp(F), Dgmp(G)) := inf
π∈Π

sup
x∈Dgmp(F)

||x− π(x)||∞.
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Introduction to TDA 6.1. Distance Metrics on Persistence Diagrams

The Bottleneck distance thus minimizes the maximum L∞-norm of any pairing, over
all pairings of points.

Figure 6.1: An illustration of the idea of bottleneck distance.

Observation 6.3. The Bottleneck distance is a metric on the space of persistence dia-
grams with finitely many off-diagonal points.

Proof. We check the three properties of metrics:

1. db(X, Y) = 0 if and only if X = Y is simple to see, since if X = Y, every point can
be matched to its copy, and if X ̸= Y, there exists some point p ∈ X \ Y ∪ Y \ X

which must be matched to some point with positive L∞-distance to p.

2. db(X, Y) = db(Y, X) is clear by definition.

3. db(X, Y) ⩽ db(X,Z) + db(Z, Y). Take a bijection π1 witnessing db(X,Z) and a
bijection π2 witnessing db(Z, Y), and concatenate the two: π := π2◦π1 is a bijection
X → Y where for every x ∈ X we can use the triangle equality of || · ||∞ to bound
||x − π(x)||∞ ⩽ ||x − π1(x)||∞ + ||π1(x) − π2(π1(x))||∞. Note that since db is an
infimum and not a minimum, there may not be π1 and π2 witnessing db. In this
case, the same argument can be applied to the converging sequences of bijections
witnessing db.

Exercise 6.4. Give an algorithm to compute the Bottleneck distance between two per-
sistence diagrams. Your algorithm should be polynomial in n, where n is the total
number of off-diagonal points in the two persistence diagrams.
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Recall that simplex-wise monotone functions f, g : K → R give rise to simplicial
sublevel set filtrations Ff,Fg. We could now compare the persistence diagrams of these
two filtrations using the Bottleneck distance, but we wish to define a metric directly
between the two functions f, g:

Definition 6.5 (infinity norm). Let f, g : X → R. Then, the infinity norm of f − g is
defined as

||f− g||∞ := sup
x∈X

|f(x) − g(x)|.

The following theorem tells us that this infinity norm and the Bottleneck distance
are closely related:

Theorem 6.6 (Stability for simplicial filtrations). Let f, g : K→ R be simplex-wise mono-
tone functions. Then, ∀p ⩾ 0 we have db(Dgmp(Ff), Dgmp(Fg)) ⩽ ||f− g||∞.

Proof. Let ft := (1 − t)f + tg for t ∈ [0, 1] be the linear interpolation between f and g.
Note that f0 = f, f1 = g.

We first show that each ft is a simplex-wise monotone function. It is clearly simplex-
wise, and we prove that it is also monotone: Let σ ⊆ τ. Since f and g are monotone, we
have f(σ) ⩽ f(τ) and g(σ) ⩽ g(τ). Thus,

ft(σ) = (1− t)f(σ) + tg(σ) ⩽ (1− t)f(τ) + tg(τ) = ft(τ).

Let p ⩾ 0 be fixed. We now draw the family of persistence diagrams Dgmp(Fft)
as a multiset in R2 × [0, 1]. Each off-diagonal point of Xt := Dgmp(Fft) is of the form
x(t) = (ft(σ), ft(τ), t) for σ being the creator and τ being the destructor. Note that the
persistence pairings (σ, τ) may only change when the order of simplex insertion changes,
which only happens finitely many times when going from t = 0 to t = 1. Let us call
these values 0 = t0 < t1 < t2 < . . . < tn < tn+1 = 1. For simplicity, we assume that at
each of these values ti exactly two simplices have the same value fti .

Within each open interval (ti, ti+1) the pairings stay constant. Furthermore, every
off-diagonal point x(t) is a linear function of t in all three coordinates, meaning that it
defines a line segment.

At ti+1, if x(ti+1) is an off-diagonal point whose creator and destructor are still paired
after ti+1, x(t) continues in the same direction after ti+1.

If on the other hand x(ti+1) is an off-diagonal point whose creator and destructor get
paired differently, recall by Exercise Sheet 5, Question 3, there are exactly two pairs that
swap their creators or destructors, and these creators or destructors that are swapped
must have the same value in fti+1 . In the persistence diagram, this means that two points
vertically or horizontally of each other swap creators/destructors, and there is a unique
continuing line segment for both of them.

Lastly, for t = 0 or t = 1 we can also have that x(t) lies on the diagonal. This means
that its past/future creator and destructor have the same value in ft.
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Introduction to TDA 6.1. Distance Metrics on Persistence Diagrams

Every point thus moves along a polygonal path monotone in t. Every such path
is called a vine, and the multiset of all vines is called a vineyard, see Figure 6.2 for
an illustration. Based on this vineyard, we now wish to find a good matching giving
an upper bound on the Bottleneck distance. We simply take the matching where we
match the start point of every vine with its endpoint. To get a bound on the Bottleneck
distance, we simply need to get a bound for the distance of each matched pair.

birth

de
at
h

ti
m
e

ti+1

Figure 6.2: The vineyards in the proof of Theorem 6.6.

Between ti and ti+1 we get for δx(t)
δt

:

δ

δt
((1− t)(f(σ), f(τ), t)) + t(g(σ), g(τ), t)) = (g(σ) − f(σ), g(τ) − f(τ), 1)

Projecting x(ti+1) and x(ti) to R2 we get two points yi+1, yi such that

||yi+1 − yi||∞ = (ti+1 − ti) · max(g(σ) − f(σ), g(τ) − f(τ) ⩽ (ti+1 − ti) · ||f− g||∞
Thus, since || · ||∞ is a norm and fulfills the triangle inequality, we also have that from

t = 0 to t = 1, the point can move at most ||f − g||∞. We thus have the desired bound
on the Bottleneck distance.

Exercise 6.7. Show that Theorem 6.6 (Stability for simplicial filtrations) can be tight
for all p ⩾ 0 and all values of ||f− g||∞.
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We wish to generalize the stability result above to general topological spaces.
Consider some topological space X and a function f : X→ R, which induces a sublevel

set filtration for every r ∈ R. We only want to consider tame functions: A function f is
tame if all homology groups of sublevel sets have finite rank, and the homology groups
only change at finitely many values, called critical values.

Theorem 6.8. Let X be a triangulable topological space, and f, g : X→ R be two tame
functions, then ∀p ⩾ 0, we have

db(Dgmp(Ff), Dgmp(Fg)) ⩽ ||f− g||∞.
We do not prove this theorem at this point, but with additional tools that we will

develop in Section 6.2, the proof of this (and of Theorem 6.6) will follow quite easily.

6.1.2 Wasserstein Distance

Consider the following three diagrams:

X Y1 Y2

Which of Y1 and Y2 is X closer to? Intuitively, one clearly says Y1: There are simply
fewer features in Y1 that are not present in X. In terms of Bottleneck distance, there is
only one reasonable matching between X and Y1, and also only one between X and Y2: We
simply match each off-diagonal point with its closest point on the diagonal. Since we only
look at the longest edge in this matching, the Bottleneck distance db(X, Y1) = db(X, Y2).

We can get rid of this counter-intuitive behavior of the Bottleneck distance by using
the Wasserstein distance.

Definition 6.9 (Wasserstein distance). For p ⩾ 0, and q ⩾ 1, the q-Wasserstein distance
is defined as

dW,q(Dgmp(F), Dgmp(G)) :=

[
inf
π∈Π

( ∑
x∈Dgmp(F)

(||x− π(x)||∞)q
)]1/q
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Introduction to TDA 6.1. Distance Metrics on Persistence Diagrams

Intuitively, we now consider the length of all edges in the matching induced by the
bijection, as opposed to just the longest one, but the longer ones get more weight. Note
that for q = ∞, we retrieve the bottleneck distance, that is, dW,∞ = db.

We can see that the stability theorem we proved for Bottleneck distance does not
hold for Wasserstein distance: consider two simplex-wise monotone functions f and g
on a path, as illustrated in Figure 6.3. In both f and g the first vertex on the path is
mapped to 1 and the edges along the path are mapped to increasing odd numbers. In
f the remaining vertices along the path get mapped to increasing even numbers, and in
g to increasing odd numbers. In particular, ||f − g||∞ = 1. In the filtration defined by
f, at every even step we add a vertex, creating a new connected component, which gets
connected to the rest of the path at the next step. Thus, each vertex of the path will
give an off-diagonal point in the 0-persistence diagram, where all of them except the first
one have a lifespan of 1. On the other hand, in the filtration defined by g, we always
add the new vertices and their connecting edge in the same step, thus the 0-persistence
diagram only has a single off-diagonal point with infinite lifespan. In particular, we have
that for arbitrarily long paths we get arbitrarily large Wasserstein distances between the
diagrams for all q <∞.

· · ·0 1 3 5
2 4 6

· · ·0 1 3 5
1 3 5

Figure 6.3: Two simplex-wise monotone functions with bounded infinity norm whose
persistence diagrams have unbounded Wasserstein distance.

A similar counterexample can also be found for topological spaces. Consider the
topological space [0, 1] and the two functions depicted by the curves in Figure 6.4. Here
we again have that ||f−g||∞ ⩽ ϵ, but the Wasserstein distance between the two diagrams
can be made arbitrarily big.

To avoid these types of counterexamples, we only want to consider even nicer func-
tions:

Definition 6.10 (Lipschitz). Let (X, d) be a metric space. A function f : X → R is
Lipschitz if there exists a constant C such that |f(x) − f(y)| ⩽ c · d(x, y) for all
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X = [0, 1]

f : g :

Figure 6.4: Two functions [0, 1] → R with bounded infinity norm whose persistence
diagrams have unbounded Wasserstein distance.

x, y ∈ X.

For these functions we again get stability theorems, that we will not prove here.

Theorem 6.11. Let X be a triangulable, compact metric space. Let f, g : X → R be
Lipschitz functions. Then there exist constants C and k (that may only depend on
X and on the Lipschitz constants of f, g) such that for every p ⩾ 0 and every q ⩾ k,

dW,q(Dgmp(Ff), Dgmp(Fg)) ⩽ C · ||f− g||1−k/q∞ .

Theorem 6.12. Let f, g : K → R be simplex-wise monotone functions. Then for all
p ⩾ 0 and all q ⩾ 1,

dW,q(Dgmp(Ff), Dgmp(Fg)) ⩽ ||f− g||q =
(∑
σ∈K

|f(σ) − g(σ)|q
)1/q

.

6.2 Interleaving of persistence modules

6.2.1 Interleaving distance

Until now, we compared persistence diagrams. We will now introduce the interleav-
ing distance, which instead compares persistence modules. Let us begin with a formal
definition of persistence modules.
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Introduction to TDA 6.2. Interleaving of persistence modules

Definition 6.13. A persistence module V over R is a collection V = {Va}a∈R of vector
spaces Va together with linear maps va,a ′ : Va → Va ′ for a ⩽ a ′, such that va,a = id
and vb,c ◦ va,b = va,c for all a ⩽ b ⩽ c.

You already know a few examples of persistence modules, e.g., the persistent homol-
ogy of sublevel set filtrations or of Čech or Vietoris-Rips complexes (here one simply
defines Va = 0 for a < 0).

We again want to consider maps between persistence modules, starting with a notion
of isomorphism, telling us when two persistence modules are “the same”.

Definition 6.14. We say that two persistence modules U and V are isomorphic if there
are isomorphisms fa : Ua → Va such that

Ua Ua ′

Va Va ′

ua,a ′

fa fa ′

va,a ′

commutes both ways, i.e., fa ′ ◦ ua,a ′ = va,a ′ ◦ fa, and ua,a ′ ◦ f−1a = f−1a ′ ◦ va,a ′.

The basic idea of interleaving distance is to measure how close two persistence mod-
ules are to being isomorphic. For this, we allow ourselves some slack, in the sense that
Ua does not need to map to Va, but it can map to Va+ϵ, as long as all the relevant
maps still behave like they would for an isomorphism. We make this formal in the next
definition.

Definition 6.15 (ϵ-interleaving persistence modules). Let U and V be persistence modules
over R. We say that U and V are ϵ-interleaved if there exist two families of maps,
φa : Ua → Va+ϵ and ψa : Va → Ua+ϵ such that the following four diagrams are
commutative:

Ua Ua ′

Va+ϵ Va ′+ϵ

ua,a ′

φa φa ′

va+ϵ,a ′+ϵ

and

Ua+ϵ Ua ′+ϵ

Va Va ′

ua+ϵ,a ′+ϵ

ψa

va,a ′

ψa ′

Ua Ua+2ϵ

Va+ϵ

ua,a+2ϵ

φa ψa+ϵ and

Ua+ϵ

Va Va+2ϵ

φa+ϵψa

va,a+2ϵ

Note that if U and V are isomorphic, then they are 0-interleaved: the first type
of diagrams (the square diagrams) are the commutative diagrams in the definition of
isomorphic persistence modules and the the second type of diagrams (the triangular
diagrams) collapse to two arrows that say that the maps φa are isomorphisms with
inverses ψa.
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Theorem 6.16. Assume U and V are ϵ-interleaved. Let δ > ϵ. Then U and V are also
δ-interleaved.

Proof. Given φ ′
a : Ua → Va+ϵ we define φa : Ua → Va+δ simply as φa := va+ϵ,a+δ◦φ ′

a.
Symmetrically, we define ψa := ua+ϵ,a+δ ◦ ψ ′

a. To check that the correct diagrams
commute, we only check the right of every pair of symmetric ones above. We have to
distinguish two cases for the first diagram, a+ δ < a ′ + ϵ and a+ δ > a ′ + ϵ.

For the first case, we get the following diagram:

Ua Ua ′

Va+ϵ Va+δ Va ′+ϵ Va ′+δ

For the second case we get the diagram:

Ua Ua ′

Va+ϵ Va ′+ϵ Va+δ Va ′+δ

And finally, for the triangular diagram we get:

Ua Ua+2ϵ Ua+δ+ϵ Ua+2δ

Va+ϵ Va+δ

One can now verify that in all of these diagrams the correct paths commute.

Thus, the following definition makes sense:

Definition 6.17 (Interleaving distance). dI(U,V) := inf{ϵ | U and V are ϵ-interleaved }.

Exercise 6.18. Show that interleaving distance is a pseudo-metric for persistence mod-
ules (up to isomorphism), i.e., prove that (i) the interleaving distance between iso-
morphic persistence modules is 0, (ii) the interleaving distance is non-negative, and
(iii) the interleaving distance fulfills the triangle inequality.

Also show that it is not a metric by showing that there exist non-isomorphic
persistence modules with interleaving distance 0.

Exercise 6.19. Let W1 and W2 be two arbitrary vector spaces. Let U be the persistence
module such that Ua =W1 for a ∈ [w, x), and Ua = 0, otherwise. For a, a ′ ∈ [w, x)
we have ua,a ′ being the identity map. For a < w or a ′ ⩾ x (or both), we have ua,a ′

being the zero map. Similarly, we define the persistence module V which is W2 in
a ∈ [y, z) and 0 otherwise.

Show that dI(U,V) ⩽ max(w−x
2
, z−y
2

).
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The underlying ideas that allowed us to define the interleaving distance of persistence
modules can also be applied to filtrations.

Definition 6.20 (Interleaving for Filtrations). Let F,G be filtrations over R. F and G

are ϵ-interleaved if there exist maps φa : Fa → Ga+ϵ and ψa : Ga → Fa+ϵ such
that the same type of diagrams commute up to homotopy, that is, for example
φa ′ ◦ ιFa,a ′ ≃ ιGa+ϵ,a ′+ϵ ◦φa are homotopic (contiguous).

We again define the interleaving distance (now between filtrations):

dI(F,G) = inf{ϵ | F and G are ϵ-interleaved }.

Observation 6.21. For all p ⩾ 0, dI(HpF, HpG) ⩽ dI(F,G).

The proof follows immediately from induced homology.
As a first application of interleaving distance, we can quantify how different the

Čech and Vietoris-Rips filtrations are. Recall that for a point cloud P and a radius
r, we have the relationship between the Čech and Vietoris-Rips complexes as follows:
C
r(P) ⊆ VR

r(P) ⊆ C
2r(P). Since this factor 2 is multiplicative, and we need an additive

ϵ for interleaving, let us just take the logarithmic scale (base 2) for the radius, i.e., we
define Crlog = C

2r and similarly VRrlog = VR
2r. Since 2(r+1) = 2 · 2r, we have Crlog(P) ⊆

VR
r
log(P) ⊆ C

r+1
log (P).

We thus have the following inclusions:

C
r
log C

r+1
log C

r+2
log

VR
r
log VR

r+1
log VR

r+2
log

Since these are all inclusions, all relevant diagrams must commute, and thus we get that
dI(Clog,VRlog) ⩽ 1.

6.2.2 Stability with respect to interleaving distance

The main motivation for interleaving distance is that it can be used to prove stability
results, at least under some tameness conditions.

Definition 6.22. A persistence module V is q-tame if the linear maps have finite rank.

Note that in this definition, the q is not a parameter, just a name. All persistence
modules that show up in the context of persistent homology on point clouds are q-tame,
so this condition is not restrictive.

Theorem 6.23. If U,V are q-tame persistence modules over R, then

db(DgmU, DgmV) = dI(U,V).

69



Chapter 6. Distances and Stability Introduction to TDA

Thus, for every interleaving one can find between two persistence modules or between
filtrations, one immediately gets a bound on the Bottleneck distance. This is a very
powerful result, and the proof of this is out of scope for these lecture notes. One direction
of the proof however follows from a decomposition result of persistence modules, that
we will discuss in Section 6.3. But first, we will look at some examples, how we can use
Theorem 6.23 to prove stability theorems.

Exercise 6.24. Prove Theorem 6.8.

6.2.3 Stability for Čech Complexes

So far, we have only seen stability results comparing filtrations induced by different func-
tions on a fixed space. However, in applications in data analysis, we consider complexes
on point clouds, and two different point clouds might not have the same size, and thus
the simplicial complexes on which we get filtrations are generally different. Using inter-
leaving distance, we can however still give stability results. In this section, we will do
this for Čech complexes.

Consider two point clouds P,Q in the same metric space X. Let us first consider
the really simple case, where P = {p}, and Q = {q} with d(p, q) = d. Then, B(p, r) ⊆
B(q, r+ d). Now, how does this generalize to larger point sets? To get the same kind of
behavior, we need that for every point in P, there exists some point in Q with distance
at most d. This motivates the following distance measure:

Definition 6.25 (Hausdorff distance). Let A,B ⊆ X be compact sets. Then the Hausdorff
distance between A and B is defined as

dH(A,B) := max{max
a∈A

d(a, B),max
b∈B

d(b,A)}.

Exercise 6.26. Show that Hausdorff distance is a distance measure.

Let dH(P,Q) = d. Then,
⋃
p∈P B(p, r) ⊆

⋃
q∈Q B(q, r + d). From this, we get the

following lemma:

Lemma 6.27. The (filtration given by) the Čech complexes of P and Q are d-interleaved.
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Proof.

C
r(P) C

r+d(P) C
r+2d(P)

⋃
p∈P B(p, r)

⋃
p∈P B(p, r+ d)

⋃
p∈P B(p, r+ 2d)

⋃
q∈Q B(q, r)

⋃
q∈Q B(q, r+ d)

⋃
q∈Q B(q, r+ 2d)

C
r(Q) C

r+d(Q) C
r+2d(Q)

≃ ≃ ≃

≃ ≃ ≃

The relevant diagrams commute up to homotopy, since we only chain together homo-
topies and inclusion maps.

We can conclude the following

Theorem 6.28. db(Dgmp(C(P)), Dgmp(C(Q))) ⩽ dH(P,Q) for all p ⩾ 0.

Proof. By Theorem 6.23, Observation 6.21, and finally Lemma 6.27, we have

db(. . .) = dI(HpC(P), HpC(Q)) ⩽ dI(C(P),C(Q)) ⩽ dH(P,Q).

6.3 Interval decomposition of Persistence Modules

In this section, we again look at persistence modules, this time as algebraic structures.
We consider persistence modules over R of vector spaces over some field F. We start by
looking at some special persistence modules, called interval modules.

Definition 6.29. A interval module I[b, d] is an persistence module

Va =

{
F if a ∈ [b, d],

0 otherwise.
and va,a ′ =

{
id b ⩽ a ⩽ a ′ ⩽ d,

0 otherwise.

Similarly, we can define interval modules on open and clopen intervals, denoted by
I(b, d), I(b, d], and I[b, d). We write I⟨b, d⟩ to include all four of these types.

For an interval module we can easily talk about birth and death as we did in persistent
homology. If we have a persistent homology module that is (isomorphic to) an interval
module, the birth and death correspond to the boundaries b, d of the interval.
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Definition 6.30. A persistence module U is called pointwise finite dimensional (p.f.d.) if
for all a ∈ R, Ua has finite dimension.

Note that all p.f.d. persistence modules are also q-tame.

Definition 6.31. Given two persistence modules U,V, we define their direct sum U⊕V
by (U⊕ V)a = Ua ⊕ Va and (u⊕ v)a,a ′ = ua,a ′ ⊕ va,a ′.

Here, the direct sum of maps just means applying the respective maps component-
wise.

Proposition 6.32. If U1,U2 are ϵ-interleaved, and V1,V2 are δ-interleaved, then U1⊕V1
and U2 ⊕ V2 are max{ϵ, δ}-interleaved.

Proof. Without loss of generality, let ϵ ⩾ δ, so we need to show that they are ϵ-
interleaved. Recall that if two persistence modules are δ-interleaved, they are also ϵ-
interleaved. Let φu, ψu be (series of) functions showing that U1,U2 are ϵ-interleaved.
Similarly, let φv, ψv be (series of) functions showing that V1,V2 are ϵ-interleaved. Then,
φu ⊕φv, ψu ⊕ψv show that U1 ⊕ V1 and U2 ⊕ V2 are ϵ-interleaved.

If we now have a direct sum of interval modules, we can still nicely talk about birth
and death: we just look at each interval module in isolation. The following theorem
shows that surprisingly most persistence modules can be expressed as direct sums of
interval modules.

Theorem 6.33 (Structure theorem). Any p.f.d. persistence module decomposes uniquely
into interval modules, i.e., we have

U ∼=
⊕
i∈I

I⟨bi, di⟩.

The intervals ⟨bi, di⟩ are exactly the barcodes if U is a persistent homology module.

Note that unless we have some additional tame-ness condition on U, I is not guaran-
teed to be finite.

Recall that when we talked about persistent homology, we said that there is some
consistent global choice of basis for persistent homology groups. That is a consequence
of the structure theorem. The structure theorem also allows us to prove one direction of
Theorem 6.23, which we will do in the following.

Proposition 6.34. Consider two interval modules I1 = I⟨b1, d1⟩ and I2 = I⟨b2, d2⟩.
Then, dI(I1, I2) = db(DgmI1, DgmI2).

Proof. To prove that dI(I1, I2) ⩾ db(DgmI1, DgmI2), we show that every upper bound
on dI is also an upper bound on db: assume that we have maps φ,ψ showing that the
two modules are ϵ-interleaved. Then, consider ψa+ϵ ◦ φa = v1a,a+2ϵ, equality holding
because φ,ψ certify ϵ-interleaving. Consider a ∈ ⟨b1, d1⟩.

72



Introduction to TDA 6.3. Interval decomposition of Persistence Modules

Case 1: v1a,a+2ϵ = 0 for all a ∈ ⟨b1, d1⟩. Then, d1 − b1 < 2ϵ, and the (infinity-norm)
distance of (b1, d1) to the diagonal is less than ϵ.

Case 2: v1a,a+2ϵ = id for some a ∈ ⟨b1, d1⟩. Then, d1 − b1 ⩾ 2ϵ. Furthermore, we have
φa(F) = F for all a ∈ ⟨b1, d1 − 2ϵ⟩. So, for these a, we must also have a+ ϵ ∈ ⟨b2, d2⟩.
This tells us that ⟨b2, d2⟩ must “cover” a large part of ⟨b1, d1⟩, namely we get b2 ⩽ b1+ϵ,
and d2 ⩾ d1 − ϵ. We can now see that |b2 − b1| ⩽ ϵ and |d2 − d1| ⩽ ϵ: to violate this,
⟨b2, d2⟩ would have to be a larger interval than ⟨b1, d1⟩ (in particular, it would be longer
than 2ϵ), and we could thus exchange their roles and get that b1 ⩽ b2+ϵ and d1 ⩾ d2−ϵ.
From this, we get that d∞((b1, d1), (b2, d2)) ⩽ ϵ, and thus get the bound on db.

We now prove the other direction, dI(I1, I2) ⩽ db(DgmI1, DgmI2). To see this, we
show that from every matching whose longest edge is ϵ, we get an ϵ-interleaving.

Case 1: The two off-diagonal points are matched to the diagonal. Then, we get that
di − bi ⩽ 2ϵ for both of them, and thus for all ϵ ′ > ϵ, I1 and I2 are ϵ ′-interleaved with
φ,ψ = 0. Thus, dI ⩽ ϵ.

Case 2: The points are matched with each other. Then, |b2−b1| ⩽ ϵ and |d2−d1| ⩽ ϵ.
Taking φ,ψ = id we can see that I1 and I2 are ϵ-interleaved. Thus, dI ⩽ ϵ.

Corollary 6.35. Let U,V be p.f.d. persistence modules. Then, dI(U,V) ⩽ db(DgmU, DgmV).

Proof. We apply the structure theorem to write U =
⊕
i∈I I⟨bi, di⟩ ⊕

⊕
j∈J 0 and V =⊕

j∈J I⟨bj, dj⟩⊕
⊕
i∈I 0. From the Bottleneck matching we get a matching between parts

making up U and V. Since the Bottleneck distance is the maximum length of any edge,
we have db(DgmU, DgmV) ⩾ db(DgmI1, DgmI2) = dI(I1, I2) for every two interval
modules that were matched together, where we used Proposition 6.34. Finally, we use
Proposition 6.32 to get the desired statement.

Questions

20. How can we measure distances between persistence diagrams? Discuss Bottle-
neck and Wasserstein distance.

21. How stable are filtrations derived from simplex-wise monotone functions with
respect to Bottleneck distance? State, illustrate and prove the stability theorem
(Theorem 6.6).

22. How can we measure distances between persistence diagrams? Define inter-
leaving distance and discuss its relation to Bottleneck distance.

23. How stable are Čech complexes to perturbations of the underlying point set?
Define Hausdorff distance, state and prove the stability theorem for Čech complexes
(Theorem 6.28).
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Chapter 7

Reeb Graphs and Mapper

In this chapter we look at another tool in topological data analysis, called Mapper. The
underlying idea of Mapper has its roots in Morse theory, where Georges Reeb defined
a graph to summarize a Morse function on a manifold. We first discuss these graphs,
called Reeb graphs, and then how to mimic the ideas for the case where instead of a
manifold we have point cloud data.

Before we dive into the mathematical details, a short remark about the pronunciation
of the word “Reeb graph”. Georges Reeb, after whom these graphs are named, was a
French mathematician born in the German speaking region Alsace. Thus, he likely
pronounced his name the German way, that is, with the “ee” spoken similar to the “ea”
in “bear” (as opposed to “beer”).

7.1 Reeb Graphs

The idea of Reeb graphs is that given some topological space X, and some function
f : X → R, we consider the preimage of f for some fixed value a ∈ R. We place one
point per connected path-component of the preimage. We do this for some values in R,
and connect the points corresponding to neighboring connected components in adjacent
preimages. More formally,

Definition 7.1. Let X be some topological space, and f a function f : X → R. Two
points x, y are called equivalent (x ∼ y), iff f(x) = f(y) = α and x and y are in the
same path-connected component of f−1(α). The Reeb graph Rf is the quotient space
X/ ∼.

To make sure that nothing weird happens due to some things being infinite, we
assume all of our functions to be levelset tame:

Definition 7.2. A function f : X→ R is levelset tame if

• each levelset f−1(α) has finitely many connected components, all of which are
path-connected, and
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X Rf

f : X → R

Figure 7.1: An example of a Reeb graph

• the homology groups of the levelsets only change at finitely many critical val-
ues.

The Reeb graph itself is just a (continuous) topological space. We call it a graph,
since it is 1-dimensional. To arrive at a graph as we know it in combinatorics, we will
need to discretize it. To discretize the Reeb graph, we need to define vertices and edges.
There are many different possibilities of defining vertices and edges to discretize the Reeb
graph, but we want to define some type of minimal one.

Let us look at the neighborhood of some point p in the Reeb graph (as a topological
space). We look at how many ways there exist to go from p towards the direction of
higher f-value (we call this number the up-degree u), and how many ways to go towards
the direction of lower f-value (we call this the down-degree l). Depending on u and l,
we classify p as in Table 7.1.

Table 7.1: Classifications of points in the Reeb graph.

u l Classification
1 1 regular
0 > 0 maximum
> 0 0 minimum
⩾ 2 l up-fork
u ⩾ 2 down-fork

Note that a point can fall into multiple of these classes, for example it can be a maxi-
mum and a down-fork simultaneously, or an up-fork and a down-fork simultaneously. We
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call the minima, maxima, up-forks, and down-forks critical points. Our discretization
places vertices at the critical points. Note that the graph we get through this process is
not necessarily simple, we may have multi-edges.

Exercise 7.3. Consider a double torus embedded in R
3. You can imagine it as the

result of taking the figure depicted in Figure 7.2 embedded in the plane x3 = 0,
replacing every point by a 3-dimensional ball with radius r < min{d/2, R/2}, and
taking the boundary of the union of these balls.

x1

x2

R R
d

Figure 7.2: The space blown up to a double torus in Exercise 7.3.

Draw the Reeb graph for the three functions f1(x) = x1, f2(x) = x2, and f3(x) =
x3.

We next consider merge trees and split trees, which are variants of the Reeb graph,
where instead of levelsets, we look at sub-level sets or super-level sets.

Definition 7.4. Let X be some topological space, and f a function f : X → R. We
have x ∼M y for two points x, y, if and only if f(x) = f(y) = α and x and y are in
the same connected component of f−1((−∞, α]). The merge tree TM is the quotient
space X/ ∼M.

Note that in the merge tree, since we only increase the space under consideration,
we never have a connected component that splits. We can only have new connected
components appearing, and connected components merging. This also tells us that the
Merge tree (or its discretization) is always a tree.

Definition 7.5. Let X be some topological space, and f a function f : X→ R. We have
x ∼S y for two points x, y, if and only if f(x) = f(y) = α and x and y are in the same
connected component of f−1([α,∞)). The split tree TS is the quotient space X/ ∼S.

In topological data analysis, we use computers, which cannot handle arbitrary topo-
logical spaces. We thus now look more at Reeb graphs in the context of simplicial
complexes. We consider a simplicial complex K and a function f : |K| → R, which is
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piece-wise linear (linear on each simplex). We observe that the Reeb graph then only
depends on the 2-skeleton of K. This is the case since looking at a levelset is the same as
cutting through the simplicial complex. When we cut through a simplex, we generally
get a simplex of one dimension lower. In a simplicial complex, connectivity is completely
determined by the 1-skeleton. Thus, before cutting, the 2-skeleton suffices. Furthermore,
we can see that the critical points are images of the vertices of K. This happens since a
connected component can only appear, disappear, split, or merge at some local maximum
or minimum of the connected component. Since the function is linear, the maximum or
minimum of every simplex is also attained at some vertex. We define the augmented
Reeb graph of a simplicial complex with a PL-function, by just taking all the images of
the vertices as our graph vertices.

How can we compute this augmented Reeb graph? We can do a discrete sweep (or
scan) through the simplicial complex in the order given by f, only stopping at values
a such that f(v) = a for some vertex v. In this sweep, we want to keep track of the
connected components. For any α ∈ R, the levelset f−1(α) of the 2-skeleton of K is
just a graph Gα: vertices and edges of K induce vertices of Gα, triangles induce edges.
We can now go through our vertices in order, look at these graphs, and update the
connected components. The runtime of this algorithm is given by the data structure
used to manage the connected components. We want a data structure that can update
the connected components under insertion and deletions of edges and vertices. There are
such data structures that can do each update in amortized time O(logm), where m is
the size of the graph. The size of the graph is bounded by the sum m of vertices, edges,
and triangles in K. Each such feature appears at one point, and disappears at one point,
and we thus have at most 2m insertions and deletions in total, giving an O(m logm)
algorithm. We thus have the following theorem.

Theorem 7.6. Given a 2-dimensional simplicial complex K with m faces and a piece-
wise linear function f : |K| → R on it, we can compute the augmented Reeb graph
Rf of K with respect to f in time O(m logm).

Exercise 7.7. Consider a simplicial complex K and a PL (piece-wise linear) function
f : |K| → R. What happens to the Reeb graph when you add one additional face to
K and extend f accordingly?

7.1.1 Homology of Reeb Graphs

The Reeb graph of a topological space X with respect to a function f can be viewed as a
summary of X through the lens of f. The natural question is: how good of a summary is
it? It is clear that in general we lose information, for example on the dimension of X, but
we can still hope that some topological information is retained. In this section, we thus
compare the homology of the Reeb graph to the homology of X. Since the Reeb graph
Rf is a graph (a 1-dimensional object), we have Hp(Rf) = 0 for p ⩾ 2, so any higher-
dimensional homology gets lost. However, a graph still has homology in dimensions 0
and 1.
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Observation 7.8. For a levelset tame f : X→ R, we have β0(X) = β0(Rf).

In other words, the Reeb graph captures the 0-homology of the input space X per-
fectly, no matter which levelset tame function f we use.

Sadly, the same does not hold for the 1-homology. Let us consider a torus, as in
Figure 7.3. In general, it can be that the choice of function f determines whether we
capture a hole or not, consider e.g. a cylinder. Note that for the torus, it is actually the
case that no matter which function f we choose, we cannot capture its 1-homology (this
is non-trivial to show).

f

Figure 7.3: The torus and its Reeb graph.

On the other hand, we can see that every cycle in the Reeb graph is indeed also a
cycle in the topological space X, and it cannot be filled in, so it is indeed a hole. Thus
we also get the following observation:

Observation 7.9. For a levelset tame f : X→ R, we have β1(X) ⩾ β1(Rf).

Can we somehow formalize which holes we lose? To do this, we split up homology into
“horizontal” and a “vertical” parts, where horizontal and vertical are of course relative to
f.

Definition 7.10. A p-th homology class h ∈ Hp(X) is called horizontal if there is a
finite set of values A = {a1, . . . , ak} such that h has a pre-image under the map
Hp(

⋃
a∈A Xa) → Hp(X) induced by inclusion, where Xa = f−1(a).

This definition means that we need to be able to find a finite set of levelsets, such
that we can find cycles contained in these levelsets, which are in the homology class h
in Hp(X).

One now wonders whether the set of horizontal homology classes forms a group. Let
this set be Hp(X). It turns out that it is indeed a group.

Lemma 7.11. Hp(X) is a subgroup of Hp(X).
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Proof. First, we see that the identity element 0 is in Hp(X). We can take an arbitrary
set A, and we can always map the 0 element of Hp(

⋃
a∈A Xa) to 0.

Next, we show that the set is closed under addition. Let p, q ∈ Hp(X), and we show
that p + q ∈ Hp(X). p has a pre-image in some levelset Ap, and q has a pre-image in
some levelset Aq. p+ q must have a pre-image in Ap ∪Aq.

Finally, we show that the inverse of every element is contained in the group, but since
every element is self-inverse in Z2-homology, we get that for every element its inverse is
also contained in Hp(X).

Since the horizontal homology is a sub-group, we can now easily define vertical ho-
mology by taking quotient groups.

Definition 7.12. The vertical homology group of X with respect to f is the group
∨

Hp(X) :=
Hp(X)/Hp(X).

Observation 7.13. rank(Hp(X)) = rank(Hp(X)) + rank(
∨

Hp(X)).

Fact 7.14. The surjection ϕ : X→ Rf induces an isomorphism
∨

Φ :
∨

H1(X) → H1(Rf).

In other words, when we go from a space X to its Reeb graph, we keep the vertical
homology classes, and lose the horizontal ones.

Corollary 7.15. Given X an orientable connected compact 2-manifold, and a Morse
function f : X→ R, then β1(Rf) = β1(X)/2.

Here, a 2-manifold is a space that locally at every point looks like R2. Orientable
means that there is an inside and an outside side. A Morse function is a “nice enough”
function defined in terms of some derivatives, which we do not need to specify here.

Exercise 7.16. (a) Consider a 2-dimensional geometric simplicial complex K embed-
ded in R

2. Consider the function f(x) = x1. Show that β1(K) = β1(Rf).

(b) Find a geometric simplicial complex K embedded in R
2 and a map f : K → R

such that β1(K) > β1(Rf).

7.2 Distances for Reeb Graphs

In order to compare Reeb graphs to each other, we again want to define distance measures
between them. We discuss two such measures here. The first one, called interleaving
distance, is, not surprisingly, similar to the interleaving distance of persistence mod-
ules. The second one, called functional distortion distance is similar to the Gromov-
Hausdorff distance for metric spaces.
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7.2.1 Interleaving Distance

When do we want two Reeb graphs to be considered the same, and thus have distance
0? We definitely need that the graphs are isomorphic in the sense of graph isomorphism.
But further than that, we also want that this graph isomorphism is “function preserving”.
In other words, the critical points should lie on the same function levels. The idea of
the interleaving distance is to measure how far away from this we are. Thus, given two
Reeb graphs Rf, Rg, “how much” is missing towards a “function preserving isomorphism”?
Towards formalizing this idea, we need a few definitions.

Note that when we compare two Reeb graphs Rf, Rg, those can be Reeb graphs of
different spaces with regards to different functions.

Definition 7.17. An ϵ-thickening Xϵ of some topological space X is given by Xϵ :=
X× [−ϵ,+ϵ].

Definition 7.18. For a Reeb graph Rf consider a function fϵ : (Rf)ϵ → R such that

(x, t) 7→ f(x) + t.

The ϵ-smoothing of Rf, denoted by Sϵ(Rf) is the Reeb graph of (Rf)ϵ with regards to
fϵ.

An example of these definitions can be seen in Figure 7.4. Note that when we say
(Rf)ϵ, we mean an ϵ-thickening of Rf, not a Reeb graph with regards to some function
fϵ. The ϵ-smoothing Sϵ(Rf) is then a Reeb graph with regards to the function fϵ, but
of (Rf)ϵ, and not of the original space Rf is the Reeb graph of. Furthermore, when we
write f(x) for some x ∈ Rf, we mean that we extend f to some function f∗ : Rf → R by
defining f∗(x) = f(f−1(x)). We will just call this function f as well for simplicity.

Definition 7.19. The function ι : Rf → Sϵ(Rf) with x 7→ [(x, 0)] is the quotiented inclusion
map. Here, [(x, 0)] denotes the equivalence class, or the connected component that
contains (x, 0) in f−1ϵ (fϵ(x, 0)).

Consider some function µ : Rf → Rg which is function preserving, i.e., f(x) = g(µ(x))
for all x ∈ Rf. A function-preserving map µ : Rf → Sϵ(Rg) induces a function preserving
map µϵ : Sϵ(Rf) → S2ϵ(Rg) with [x, t] 7→ [µ(x), t].

Definition 7.20 (Reeb graph interleaving). Two Reeb graphs Rf, Rg are ϵ-interleaved, if
there exists a pair of function preserving maps φ : Rf → Sϵ(Rg), ψ : Rg → Sϵ(Rf)
such that the following diagram commutes:

Rf Sϵ(Rf) S2ϵ(Rf)

Rg Sϵ(Rg) S2ϵ(Rg)

ι

φ

ιϵ

φϵ

ι

ψ

ιϵ

ψϵ
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Rf (Rf )ε Sε(Rf )

Figure 7.4: A Reeb graph, its ϵ-thickening, and its ϵ-smoothing.

Here, to understand why ιϵ makes sense, we need the following fact, the proof of
which is left as an exercise.

Observation 7.21. Sδ(Sϵ(Rf)) = Sδ+ϵ(Rf).

Note that by construction of ι, ιϵ and φϵ (or ψϵ, respectively), the trapezoidal parts
of this diagram commute trivially: φϵ ◦ ι(x) = φϵ([x, 0]) = [φ(x), 0] = ιϵ ◦ φ(x). Fur-
thermore, note that for sufficiently large ϵ, Sϵ(Rf) is a union of segments, i.e., any two
Reeb graphs of compact connected spaces are ϵ-interleaved for some ϵ. Lastly, if Rf and
Rg are ϵ-interleaved, then they are also δ-interleaved for all δ ⩾ ϵ.

Definition 7.22. dI(Rf, Rg) = inf{ϵ | Rf, Rg are ϵ-interleaved}.

We once again have a stability theorem, which we will not prove here.

Theorem 7.23. For tame functions f, g : X→ R we have dI(Rf, Rg) ⩽ ||f− g||∞.

7.2.2 Functional Distortion Distance

As mentioned above, the functional distortion distance is motivated by the Gromov-
Hausdorff distance for metric spaces. Thus, the first step is to define a metric on a Reeb
graph.

Definition 7.24. Let Rf be a Reeb graph of a space X, and u, v ∈ Rf (in the same
connected component), and let π be a path from u to v. We define the height of π
as height(π) = maxx∈π f(x) − minx∈π f(x). To turn this into a distance metric, we
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consider Π(u, v),the set of all paths between u and v. Then, the function induced
metric on Rf is defined as

df(u, v) = min
π∈Π(u,v)

height(π).

In a sense, df(u, v) is the “thickness” of the thinnest “slice” of the space X in which u
and v are connected.

Definition 7.25 (Functional distortion distance). Let Rf and Rg be two Reeb graphs. Let
Φ : Rf → Rg, Ψ : Rg → Rf be continuous functions, but not necessarily function-
preserving. Then, we define correspondence and distortion:

C(Φ,Ψ) = {(x, y) ∈ Rf × Rg | Φ(x) = y or x = Ψ(y)}

D(Φ,Ψ) = sup
(x,y),(x ′,y ′)∈C(Φ,Ψ)

1

2
|df(x, x

′) − dg(y, y
′)|.

And finally, we define the functional distortion distance,

dFD(Rf, Rg) = inf
Φ,Ψ

max{D(Φ,Ψ), ||f− (g ◦Φ)||∞, ||g− (f ◦ Ψ)||∞}.
Also for this distance measure there is a stability theorem.

Theorem 7.26. Let f, g : X→ R be tame functions. Then, dFD(Rf, Rg) ⩽ ||f− g||∞.

We can also quantify the relation between the two discussed distances.

Theorem 7.27. dI(Rf, Rg) ⩽ dFD(Rf, Rg) ⩽ 3dI(Rf, Rg).

Exercise 7.28. Consider a merge tree T with regards to a function f. We define
the a-shift xa for any x ∈ T to be the unique “ancestor” of x with function value
f(xa) = f(x) + a.

We now consider two merge trees; T1 with regards to f, and T2 with regards to
g. We call T1 and T2 ϵ-compatible if there exist maps α : T1 → T2 and β : T2 → T1
such that we get the following commutativities:

• g(α(x)) = f(x) + ϵ for all x ∈ T1

• f(β(y)) = g(y) + ϵ for all y ∈ T2

• β ◦ α(x) = x2ϵ for all x ∈ T1

• α ◦ β(y) = y2ϵ for all y ∈ T2.

The interleaving distance between merge trees dI(T1, T2) can now be defined as
the infimum of all ϵ such that T1 and T2 are ϵ-compatible. Show that dI(T1, T2) =
dFD(T1, T2).

Note: we technically only defined dFD for Reeb graphs. You can simply consider a
merge tree to be the Reeb graph of itself (with regards to the same filter function).
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7.3 Mapper

7.3.1 An approximation of the Reeb graph

Reeb graphs lose a lot of information, since they at most retain some 1-dimensional holes,
but no larger holes. To generalize Reeb graphs further, we start looking at neighborhoods
instead of levelsets, which will then lead to the Mapper algorithm.

To begin, we consider the 1-dimensional case, and try to find an approximation of the
Reeb graph. Instead of looking at pre-images of points, we will now look at pre-images
of intervals. Let U = {Uα}α∈A be an open cover of R (i.e., a collection of open sets whose
union is R). As always, we consider a function f : X→ R. For each f−1(Uα), we consider
a partition into path-connected components, i.e., f−1(Uα) =

⋃
β∈Bα Vβ. We then look at

f∗(U) := {Vβ}, the set of all Vβ we get over all α. Our object of interest is the nerve of
this family, i.e., N(f∗(U)).

X f ∗(U)U N(f ∗(U))
Figure 7.5: A space X, an open cover U of R, the family f∗(F), and its nerve.

If we take sufficiently nice functions, and sufficiently fine covers, then N(f∗(U)) is
isomorphic to Rf.

7.3.2 Topological Mapper

We can generalize this idea to maps to arbitrary spaces.

Definition 7.29. Let X,Z be topological spaces. Then we call f : X → Z well-behaved
if for all path-connected open sets U ⊆ Z, f−1(U) has finitely many path-connected
components.
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Definition 7.30 (Mapper). Let f : X→ Z be well-behaved, and U be a (finite) open cover
of Z. Then the Mapper is defined as M(U, f) := N(f∗(U)).

As an example, we look at X being the boundary of the 3-cube [0, 1]3. We then also
look at Z1 = R

2 spanned by the x- and y-axis, with f1 : X→ Z1 being the projection onto
this plane. Furthermore, we look at Z2 = R, spanned by just the x-axis, and f2 : X→ Z2
being again the projection.

We consider the open cover U2 of Z2: {(−∞, 1
3
), (0, 1), (2

3
,+∞)}. For Z1, we consider

the cover U1 := U2 × U2.

x

y

M(U2, f2)

M(U1, f1)

Figure 7.6: The cover U∞, and the two Mappers. The Mapper M(U1, f1) consists
of an empty octahedron, with additional filled tetrahedra attached at the
purple vertices. The whole space thus collapses to an octahedron.

Exercise 7.31. (a) Consider spaces X,Z, a filter function f : X → Z, and an open
cover U of Z. Show that if the pullback cover f∗(U) is a good cover of X, then
M(U, f) is homotopy equivalent to X.

(b) Give an example of spaces X,Z, a filter function f : X → Z, and a good cover
U of Z, such that M(U, f) is not homotopy equivalent to X.

(c) Give an example of spaces X,Z, a filter function f : X→ Z, and an open cover
U of Z such that the pullback cover f∗(U) is not a good cover, but M(U, f) is
still homotopy equivalent to X.

7.3.3 Mapper for Point Clouds

We would like to apply the ideas of the topological Mapper to analyze the shape of data.
However, once again we have the issue that data usually does not come in the form of
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a topological space, but as a set of data points with a notion of distance between them.
The Mapper algorithm for point clouds adapts the ideas of the topological Mapper to
this setting.

Input: In the most general setting, data comes as a finite metric space (P, dP), for ex-
ample as points in Rd or as vertices of a graph. We also require a cover U of a space Z,
usually Z = R, as input. Finally, we also need a filter function f : P → Z and a clustering
algorithm (which might also require some input parameters).

Algorithm: Since at the moment we only have a discrete metric space, we do not really
have the notion of connected components yet. For every U ∈ U, we thus cluster the pre-
image f−1(U) using some clustering algorithm, which we can also consider as an input.
Now, we can just consider each cluster Ci as a vertex of some simplicial complex K, and
add a face {C1, . . . , Ck} to K if these clusters (which are just point sets) have a common
point.

Output: We output K, or even just its 1-skeleton.
As you can see, this algorithm requires a lot of input parameters. While this allows

to encode previous knowledge of the data set (e.g. by choosing as filter function the
distance to a known center of the data), it also makes the space of possible outputs
very large. Picking the correct parameters is currently still an art form on its own, and
there is significant research being done towards understanding the interplay between the
parameters and statistical guarantees for certain good choices of parameters.

7.4 Multiscale Mapper

Motivated by the many tuneable parameters, we discuss here one idea to look at many
values at once. The multiscale Mapper is a combination of the ideas of persistence and
of Mapper. We here want to look at different covers.

Definition 7.32. Let U = {Uα}α∈A and F = {Vβ}β∈B be two covers of the same space X.
A map of covers is a map φ : A→ B such that for every α ∈ A, we have Uα ⊆ Vφ(α).

Proposition 7.33. If φ : U → V is a map of covers (with a slight abuse of notation),
then the map N(φ) : N(U) → N(V) given on the vertices by φ is simplicial.

Proof. Let σ ∈ N(U). We need to show that the intersection
⋂
β∈φ(σ) Vβ is non-empty.⋂

β∈φ(σ)

Vβ =
⋂
α∈σ

Vφ(α) ⊇
⋂
α∈σ

Uα ̸= ∅

Thus, φ(σ) ∈ N(V).
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Proposition 7.34. Let f : X→ Z be some map, and U,V be covers of Z, with φ : U → V

some map of covers. Then, there exists a map of covers f∗(φ) : f∗(U) → f∗(V).

Recall that f∗(U) is the cover of X consisting of the connected components of the
pre-images of the sets of U under f.

Proof. For every α, we have Uα ⊆ Vφ(α) =⇒ f−1(Uα) ⊆ f−1(Vφ(α)). We now need to go
from these pre-images to their connected components. Since every connected component
of f−1(Uα) must lie in a unique connected component of f−1(Vφ(α)), our desired map of
covers is given by exactly mapping to this connected component.

If we have multiple maps of covers, U φ→ V
ψ→ W, we can concatenate the maps, and

the f∗ function distributes: f∗(ψ ◦φ) = f∗(ψ) ◦ f∗(φ).
Let U = U1

φ1→ U2
φ2→ . . .

φn−1→ Un be a sequence of covers of Z with maps between
them, which we call a cover tower. By applying f∗ we get a cover tower f∗(U) of X.

Definition 7.35 (Multiscale Mapper). Let f : X → Z, U a cover tower of Z. Then, the
Multiscale Mapper MM(U, f) is

MM(U, f) := N(f∗(U)) = {N(f∗(Ui)) | Ui ∈ U})

together with the induced simplicial maps

N(f∗(φi)) : N(f∗(Ui)) → N(f∗(⟩+∞)).

Applying homology, we get the sequence homology groups with induced homo-
morphisms between them, i.e., a persistence module:

Hp(N(f∗(U1)))
N(f∗(φ1))→ . . .

N(f∗(φn−1))→ Hp(N(f∗(Un))).

We can now view DgmpMM(U, f) as a topological summary of f through the lens
of U.

As opposed to the normal Mapper, at first glance the Multiscale Mapper adds even
more parameters. But a cover tower can be seen as a way of looking at a whole interval
of covers. For example, we can get a cover tower by increasing the size of all intervals
in an interval cover. The features of the data should show up as a robust feature that
persists for a longer time over this process, while spurious features obtained from choosing
“wrong” Mapper parameters should disappear quickly.

Questions

24. What is a Reeb graph? State the definition and describe how we get the graph
structure.
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25. How can we compute the augmented Reeb graph of a piece-wise linear func-
tion? Define the augmented Reeb graph and explain the algorithm to compute
it.

26. How much of the homology of the underlying topological space is captured by
the Reeb graph? Explain vertical and horizontal homology.

27. What is the interleaving distance for Reeb graphs? Give the definitions and
state the relevant stability theorems.

28. What is the functional distortion distance for Reeb graphs? Give the definitions
and state the relevant stability theorems.

29. What is the topological Mapper? State the Definition and give an example.

30. How can we use Mapper on point cloud data? Explain the Mapper algorithm
and describe the input parameters.

31. How can we use Mapper on several covers at once? Explain the Multiscale
Mapper.
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Chapter 8

Optimal Generators

In some applications, we are not only interested in the number of holes in our data, but
we also want to look at specific holes, that is, we would like to have a representation of
this hole in the data, or even a basis of the homology group. However, in a homology
class, there are many homologous cycles. Furthermore, there are many different choices
of homology classes which form a basis of the homology group. Thus, there are many
different choices for cycles as bases of the homology group. How do we find good bases?

We define a weight function w : Kp → R⩾0 on the p-simplices, and the weight of a
chain is simply the sum, i.e., w(c) =

∑
αiw(σi) for c =

∑
αiσi. The weight of a set of

cycles C is then the sum of weights of each cycle. We are now interested in cycles that
have minimal weight in their homology class, or at bases with minimum total weight.

We look at this problem in two settings: first we look at the case where we are given
a fixed simplicial complex and we want to find an optimal basis for the homology of this
complex. This can be applied for example if the persistence diagram of a filtration gives
us a range of values in which we expect the complex to nicely capture the shape of the
data. We can then compute an optimal basis for the fixed complex for some value in this
range.

In some applications, we might also want to take a closer look at single intervals in
the persistence barcode, that is, understand a hole that is born at time b and dies at
time d (for example, to decide whether it corresponds to a feature in the data or is just
a consequence of the process). This brings us to the second setting we look at in this
chapter, where we want to find an optimal representative of a persistent homology class.

8.1 Optimal basis of a fixed complex

Definition 8.1. A set C of cycles is an optimal basis for Hp(K) if it is a basis and there
is no other basis C ′ with w(C ′) < w(C).

How can we compute such an optimal basis?
In a first step, we are going to compute a set of cycles C which contains an optimal

basis. Then, we sort the cycles by increasing weight, and pick the first cycle to be part
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of our basis B. Then, we simply iterate through our cycles and add a cycle ci to our
basis if it cannot be written as a linear combination of our current basis. Finally, if c1 is
a boundary, we return the B \ {c1}, and otherwise we return B.

Assuming that we can do all these steps, it follows from a more general framework
in matroid theory that the computed basis is indeed optimal.

Exercise 8.2. A matroid is given by a collection I of subsets of some universe U, such
that

1. ∅ ∈ I, and if some set L is in I, all L ′ ⊆ L are also in I.

2. If some L, L ′ are in I, and |L ′| = |L|+ 1, then there exists an element f ∈ L ′ \ L,
such that L ∪ {f} ∈ I.

The sets in I are also called the independent sets of the matroid. The inclusion-
maximal sets in I are called bases.

(a) Show that for U being any finite set of vectors in some vector space, the
family I of subsets of U corresponding to linearly independent vectors forms
the family of independent sets of a matroid.

(b) Show that for any graph G = (V, E), the family I of subsets of E corresponding
to forests in G forms the family of independent sets of a matroid.

(c) Consider a matroid on a universe U with a weight function w : U → R.
Consider the following greedy algorithm: begin with L = ∅, and consecutively
add the lowest-weight element e ̸∈ L such that L ∪ {e} remains an independent
set, until reaching a basis. Show that this greedy algorithm finds a minimum-
weight basis.

For the first step of the above algorithm, we need to be able to compute our beginning
set C. Furthermore, we need to be able to check linear independence.

From now on, we will focus on computing a basis for H1(K). Without loss of gen-
erality, we say that K is 2-dimensional, with n triangles, O(n) edges and vertices. To
compute C, we begin with C = ∅. For all vertices v, we compute the shortest path tree
Tv rooted at v. We can do this for example with Dijkstra’s algorithm. For every edge e
that is not in Tv, we add the unique cycle in Tv ∪ {e} to C. This can be implemented in
O(n2 logn), and yields a set of cycles with |C| ∈ O(n2). But, we need to prove that it is
indeed a set which contains an optimal basis.

Lemma 8.3. C as computed by the algorithm above contains an optimal basis.

Proof. Let C∗ be an optimal basis, and towards a contradiction, let c be a cycle contained
in C∗ \ C. As the weights are non-negative, we can assume that c is simple, i.e., no edge
is used multiple times.
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Let v be a vertex in c, and let Tv be the corresponding shortest path tree. There must
be an edge e = {u,w} in c, which is not in Tv, since Tv is a tree. Let Πv,u and Πv,w be
the shortest paths from v to u,w respectively. These paths must be contained in Tv. Let
us similarly consider Π ′

v,u and Π ′
v,w to be the (shortest) paths from v to u,w in c. We

know that not both Π ′
v,u = Πv,u and Π ′

v,w = Πv,w, so w.l.o.g. assume that Π ′
v,u ̸= Πv,u.

We now define the cycle c1 = {Π ′
v,w, e, Πv,u} and c2 = {Πv,u, Π

′
v,u}. We can now see

that as we work in Z2, c = c1 + c2. Furthermore, we have w(c1) ⩽ w(c), since Πv,u is a
shortest path (in K), while Π ′

v,u is not necessarily shortest. The same also holds for c2:
w(c2) ⩽ w(c) since {Π ′

v,w, e} can not be shorter than Πv,u.
Let us now consider the homology classes of c1 and c2. If both [c1] and [c2] were

dependent on C∗\{c}, then so would [c], since c = c1+c2. Then, C∗ would not be a basis.
Thus, at least one of [c1] and [c2] has to be independent of C∗ \ {c}. Let us consider first
that c1 is independent. Then, we could replace c by c1 in C∗ and get a basis which is
at least as good as C∗. We can repeat the argument for that basis with v ′, the common
ancestor of Πv,u and Π ′

v,w. If c2 is independent, we replace c by c2 in C∗ and repeat the
argument with v ′ the common ancestor of Πv,u, Π ′

v,u and e an edge incident to u.
At the end, we get a basis C ′ with w(C ′) ⩽ w(C∗) with C ′ ⊆ C.

So, we have finished the first step of our algorithm. It remains to figure out how to
check independence. For this, we introduce annotations.

Definition 8.4. An annotation of p-simplices is a function a : Kp → Z
g
2 giving each p-

simplex a binary vector of size g. This extends to chains by sums. An annotation
must fulfill:

• g = βp(K)

• a(z1) = a(z2) iff [z1] = [z2].

Given an annotation, we can now clearly check linear independence of cycles by
simply checking linear independence of a set of vectors, for which we have existing tools
such as Gaussian elimination.

Proposition 8.5. In every simplicial complex K and for every p ⩾ 0, there exists an
annotation of p-simplices, and can also be computed.

Proof. (Sketch for p = 1) We can compute a spanning forest T , and let m be the number
of remaining edges. We initialize annotations of length m, and set a(e) = 0 for every
edge in the spanning forest T . For every remaining edge ei, we set aj(ei) = 1 if and only
if j = i, and 0 otherwise.

For every triangle t, if the annotation of its boundary δt is not 0, we find a non-zero
entry bu in a(δt) and add a(δt) to every edge with au(e) = 1, and we delete the u-th
entry from all annotations. One can show that this yields a valid annotation, and it can
be implemented in O(n3), and more clever implementations work in O(nω).
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To check independence more efficiently, we add auxiliary annotations also to vertices
in a shortest path tree Tv rooted at v. We give v the annotation 0, and for a vertex
x that is the child of y, we set a(x) := a(y) + a(exy). For every cycle defined by the
non-tree edge e = uw, we now have a(ce) = a(u) + a(w) + a(e). So, we never actually
have to compute an explicit representation of a cycle by its edges, we only need to store
its weight, the shortest path trees with the auxiliary annotations, and the non-tree edge
e. Note that the auxiliary annotations can be computed in O(gn) for the whole tree,
thus in O(gn2) for all trees.

Finally, we have to check independence. Given an (n×m) matrix M, we can find the
lexicographic leftmost set of independent columns in time O(max(n,m)ω). Instead of
naively doing this n2 times (once for every cycle), we group our cycles of C into groups
Ai of size g, and compute the leftmost set for [B|Ai], and thus we get O(n2gω−1) runtime
for this step.

To summarize, computing C takes O(n2 logn), sorting the O(n2) cycles also takes
O(n2 logn), and for checking linear independence we need O(nω) for the annotations
of the edges, O(gn2) for the auxiliary annotations, and O(n2gω−1) for the block-wise
linear independence checking. Overall, we thus get a runtime of O(nω + n2gω−1).

Theorem 8.6. Given a 2-dimensional simplicial complex K with n faces and a weight
function w on its edges, we can compute an optimal basis of H1(K) in time O(nω+
n2gω−1).

8.2 Persistent cycles

In the persistent setting, given a filtration F and an interval [b, d], can we find an optimal
persistent p-cycle c that is born at b and dies at d?

Sadly, this problem is already known to be NP-hard for d <∞ and p ⩾ 1. However,
if we assume that K is a weak (p+1)-pseudomanifold, i.e., a simplicial complex in which
each p-simplex is a face of at most 2 (p+1)-simplices, then there exists a polynomial-time
algorithm, which we will describe in this section.

If we consider cycles that live until ∞, we can solve the problem in polynomial time
for p = 1, but it is NP-hard for p ⩾ 2. Here, the assumption of K being a weak (p+ 1)-
pseudomanifold does not save us. However, if we further assume that the complex can
be embedded in Rp+1, then it is again polynomial.

To solve the problem for d < ∞ in a weak (p + 1)-pseudomanifold, we consider
undirected flow networks: We have a graph, where every edge has a capacity in [0,∞],
some sources, and some sinks, and we want to find the maximum flow we can send from
the sources to the sinks without sending too much flow through any edge. Recall that
if we consider a cut which separates the sources from the sinks, the capacity of this cut
is an upper bound on the value of the maximum flow. Furthermore, if we consider the
minimum such cut, its capacity is equal to the value of the maximum flow. This can be
solved in polynomial time.
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We can build a dual graph G, by placing a vertex into every (p + 1)-simplex and
adding an edge whenever they share a p-simplex. We furthermore add a dummy vertex
which gets connected to all vertices which only have one neighbor. We are going to make
the vertex belonging to the (p + 1)-simplex which is the destructor of our desired cycle
the source. Furthermore, we make the dummy vertex as well as all vertices belonging
to (p+ 1)-simplices added after the destructor into sinks. Edges added at or before the
birth are getting the capacity equal to their weight, while all other edges get capacity∞. Then, it turns out that the p-simplices belonging to the edges in a minimum cut
separating the sources from the sinks are an optimal persistent cycle.

Exercise 8.7. Consider a simplex-wise filtration on a simplicial complex that is a
weak (p + 1)-pseudomanifold, and consider some interval [b, d] (for d < ∞) such
that there exists a p-cycle born at b and dying at d. We look at the dual graph G
with source and sinks defined as in the lecture. Consider a cut with finite capacity
that separates the source from the sinks. Let c be the chain corresponding to the
p-simplices dual to the edges going over this cut. Show that c is a p-cycle born at
b and dying at d, and show that its weight is equal to the capacity of the cut.

This exercise proves one direction of the correctness of the algorithm described above.
The other direction is similar. We get the following result.

Theorem 8.8. Given a a simplex-wise filtration on a simplicial complex that is a
weak (p+1)-pseudomanifold and an interval [b, d] (for d <∞), we can compute an
optimal p-cycle born at b and dying at d in polynomial time.

For details, we refer to Chapter 5 in the book of Dey and Wang [1].

Questions

32. How can we compute an optimal basis given a set of cycles that contain one?
Explain the algorithm described in Section 8.1. Further, explain annotations and
how they can be used to check linear independence.

33. How can we compute a set of 1-cycles that contain an optimal basis of H1?
Describe the algorithm to do this and prove its correctness.

34. How can we compute an optimal persistent cycle? Explain the algorithm de-
scribed in Section 8.2.

References
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Chapter 9

Applications

In this chapter we highlight some classical and recent applications of topological data
analysis. The fields of application are as diverse as image analysis, medicine, analysis
of time series and politics. We also discuss some of the approaches to use persistence
diagrams in machine learning.

9.1 The Space of Image Patches

We consider a dataset of about 4000 greyscale images taken around Groningen (Nether-
lands) by van Hateren and van der Schaaf [2], see Figure 9.1 for some examples. Each
such image is described by giving each pixel a number between 0 (white) and 1 (black).
From every image, they sampled 5000 patches of 3-by-3 pixels. To get interesting patches,
they only looked at the top 20% with the highest contrast. Thus, we end up with about
4 million three by three patches, each describable as a vector in R9. They further nor-
malize the contrast (such that the darkest and brightest pixel are 1 and 0, respectively)
and the overall norm of the vectors. Thus, we end up with points on S7. How does this
point cloud look? Is there some interesting structure in this point cloud?

Carlsson, Ishkhanov, de Silva and Zomorodian analyzed this point cloud using per-
sistent homology [1]. Since there are a lot of points, they at first only sampled from the
densest parts of the data. Computing the persistent homology of the Witness complex
in dimensions 0, 1, and 2, one gets the barcodes depicted in Figure 9.2. It is thus a
reasonable assumption that β0 = 1, β1 = 1, and β2 = 0, suggesting that the data set
looks like a circle. PCA also shows a circular arrangement of the data points, see Figure
9.3. This circle can be interpreted as the possible angles of a detected “edge” in the
images, depicted in Figure 9.4.

What happens if we additionally also sample some points from parts of the data of
intermediate density? Computing the persistent homology we end up with the barcodes
in Figure 9.5, suggesting that instead of one 1-cycle, we end up with five. If we again
consider the PCA, depicted in Figure 9.6, we see a cross in the middle of the circle seen
previously. However, this only shows four circles! Where is the fifth one? Most likely
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Figure 9.1: Some examples of images in the data set.

Figure 9.2: The barcodes of the densest part of the data.
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Figure 9.3: Using PCA on the densest part of the data.

Figure 9.4: The interpretation of the densest part of the data.
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Figure 9.5: The barcodes including the medium density part of the data.

some cycle is orthogonal to the projection chosen by the PCA. The interpretation picked
from this situation is that the dataset consists of three great circles of some S2 that are
all orthogonal. We can interpret these three circles as the circle described above, a circle
describing different translations of vertical edges, and one circle describing translations
of horizontal edges. This is depicted in Figure 9.7.

However, if we finally also include points from the lowest density parts of the data, we
get the barcodes depicted in Figure 9.8. We start seeing some feature in the persistent
2-homology, and reduce β1 to most likely 2 again. How can this space look? It must
somehow include the three circles found before. We can embed the circles as in the
Figure 9.9, indicating that the space is a Klein bottle.

Clearly, this is not a proof. The persistent homology computed agrees with the
Klein bottle, but it would also agree with a torus. To give more evidence, we could for
example compute persistent homology over a different field such as Z3, with which we
can distinguish between a Klein bottle and a torus. It turns out that the space is indeed
a Klein bottle, as is shown in the work of Carlsson et al. [1].

9.2 Medical Data

The following application comes from the first paper describing the Mapper approach.
The data comes from a study in 1979 on 145 participants, with six quantities measured
per participant. After applying various classical projection methods, the original study
came up with a picture containing a blob of healthy people, with two strains coming out
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Figure 9.6: Using PCA on the high and medium density part of the data.

Figure 9.7: The interpretation of the high and medium density part of the data.
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Figure 9.8: The barcodes for the entire data.

Figure 9.9: The interpretation of the entire data.
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of this blob, called type 1 and type 2 diabetes. This is something that Mapper should
easily detect: As the filter function they used a density estimator for each point. In the
Mapper you also see areas of large density, with 2 flares going out of it.

The Mapper approach has later also been applied to genomic data from a breast
cancer study. This data is very high dimensional, each patient is a data point in R262.
As a filter function they used the distance to some baseline healthy tissue. With this
method, they found a type of tumor which has previously not been classified, while
also confirming the strains of breast cancer known previously. Since then, topological
data analysis has been used in many studies in medicine. TDA seems to excel in these
high-dimensional datasets since many features seem to be the result of higher-order
interactions of different coordinates. TDA can also deal with much smaller data sets
than other approaches such as deep neural networks, that need tons of data points to
train, validate, etc. In medicine, studies often have very few data points due to the large
monetary cost, workload, and also ethical questions involved with data gathering.

9.3 Time series

Time series is data given as a sequence of points xt in some metric space X, where t is
a (discrete) variable. The goal in analyzing time series is often analyzing and finding
periodic behaviour in the time series.

We can embed time series in some higher-dimensional space, by always considering
a sequence of l+ 1 consecutive points, i.e., Il := {(xti , xti+1 , . . . , xti+l)} ⊂ Xl+1. The idea
is that periodicity in the time series translates to loops (1-dimensional holes) in Il.

As an example, consider xt = sin(π
4
t), and consider l = 1. Then, we get a loop in R2.

If we however consider xt = t, I1 is just a straight line.
This approach has been used for analyzing motion capture data, where cameras track

the location in 3-space of certain points on a human body marked by physical markers.
The data considered are six seconds long recordings of movement such as boxing. Every
data point in this set is roughly 70-dimensional. Using PCA into 2 dimensions, some
loops can be seen but we cannot really distinguish different loops. In persistent homology,
there are six different loops that persist a long time. Looking back at the input data,
these six different loops corresponded to six different boxing movements.

9.4 Politics

The data considered in this application is gathered from the sessions of the US house of
representatives through the year 2010. For every vote, we set xi = 1 if the member i says
Yes to the vote, −1 for No, and 0 otherwise. This gives 664 datapoints in R447. Doing
2-dimensional PCA and coloring the data by splitting the members into the two parties,
we can see that there are four main “corners” in which issues lie, ones that get bipartisan
support, those that get bipartisan rejection, and those that are supported by republicans
and rejected by democrats, and those where it is the opposite way. We can see that there
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are almost no votes that lie in between two of these corners, and especially few that lie in
the middle of all four corners. We can also see that the corner with bipartisan rejection
is very sparsely populated, since such issues rarely make it far enough to be voted on.

If we do persistent homology of the same data, we see nothing. Why? Persistent
homology is quite vulnerable to low-density noise. The very few points in the middle of
the 2-axis diagram quickly fill in the perceived hole and kill it in persistent homology.
If we again estimate the density around each data point and only consider the densest
99%, we start seeing a very clear hole.

9.5 Shape segmentation

Given a three-dimensional shape by points, edges, and triangles, we want to label dif-
ferent parts of the shape. For example, given a model of a human body, we want to
segment it into categories such as “head”, “torso”, “upper arm”, etc.

We can pick some point on the body, and start growing a ball around it, using
the geodesic distance (length of the shortest path along the surface). On the resulting
filtration, we can perform persistent homology. If we do this for a point on the palm of
a hand, for example, we get a one-dimensional hole for every finger. If we do this for
a point on a finger, the persistence diagram looks very different. We can then classify
the persistence diagrams to segment the shape. But, how can we do this? We need to
somehow insert persistence diagrams into classical ML pipelines.

9.6 TDA in ML

Many machine learning pipelines require input points to be in Euclidean space (and not
just any metric space, which the persistence diagrams would already fulfill), or in the
case of kernel methods, at least in some space that has an inner product.

There are many ways to turn persistence diagrams into elements of metric spaces.
These methods are also called vectorizations. On https://persistent-homology.streamlit.app
one can see examples and play around with various vectorization methods.

Persistence Statistics Persistence statistics are measures we can analyze parts of a per-
sistence diagram on, for example we can take the mean, standard deviation, median,
interquartile range, full range, percentiles, etc., of birth times, death times, midpoints,
or lifespans. This already gives a very large number of features, which hopefully captures
enough information about the persistence diagram.

Persistence Landscapes We can draw a horizontal and vertical line segment between each
point in a persistence diagram to the diagonal. Flipping this arrangement of line segments
such that the diagonal is horizontal, we can look at the k-th envelope, the function
describing the height of the k-th highest line segment at each point on the diagonal.
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These envelopes are piecewise linear, and piecewise linear functions lie in an Lp-space,
which is an inner product space and thus allows Kernel methods to be applied.

Betti Curves The Betti curve is the function β : R→ N⩾0 which assigns each time t the
current Betti number. This is again a piecewise linear function, capturing all the births
and deaths, but throwing away the pairing between births and deaths.
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