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1 General information

The main idea of the course is that students from different universities col-
laborate on projects in topological data analysis. These projects can be of
theoretical nature, e.g. the development or analysis of some algorithm or
applied, e.g. using topological data analysis on concrete data sets.

The course will start with two lectures introducing some topics that are
relevant to the proposed projects. Then, there is an official kick-off meeting,
in which the problems will be introduced. The assignment of the groups
will be made in the days after the kick-off meeting, so that the groups can
start working on their projects as soon as possible. For the main part of
the course, the groups work on their project individually, guided by the two
mentors they are assigned. Once during the course, each group will also
present their progress to the other mentors, collecting some more feedback
from different people. At the end of the course, each group hands in a
written report where they summarize their work and present their findings.

1.1 Important dates

All events will start at 17:00 Ziirich/Eindhoven/Fribourg time; 11:00 Pough-
keepsie/Notre Dame time; 8:00am Eugene time.

Intro lecture by Patrick Schnider on persistent

September 3, 2024 homology and Mapper

Intro lecture by Tao Hou and Dev Sinha on co-
homology and Hodge decomposition

September 17, 2024 | Kick-off meeting

Groups work on their projects individually,
guided by the mentors

December 17 and 18, | Deadline for handing in the final reports and
2024 meeting for final presentations

September 10, 2024

During the course

1.2 Formalities for the final reports and presentations

The final reports should be structured like a research paper in the area.
In particular, they should contain an overview of the relevant literature,
clearly highlight the novel contributions and precisely describe the technical
content. There is no formal page limit, each group can use as many or few
pages as they need to write their paper in a way that they find appropriate
for presenting their work. For questions about the structure and contents
of the reports, the mentors are a valuable resource of help.



In the final meeting, each group presents their paper in a 20 minute talk,
followed by 5 minutes of questions from the audience. This talk can be given
by a single group member or by several people. The goal of this talk is, that
the other groups get to see your results, so it should be prepared with the
peers as a target audience.

After the final meeting, all mentors will decide on the final grades for
each individual person taking the course. For this, the work during the
semester, the final report as well as the presentation will be taken into
account. Finally, the grade will be converted to the grading system of the
local university by the local mentor.

1.3 Additional information and communication channels

Additional information can be found on the course webpage. In particular,
we intend to maintain a list of sources on all aspects topological data analysis
that are relevant for the projects.

Each group will have access to a zoom room for their meetings, and an
overleaf file for their write-ups. For sharing of code and other documents,
each group can request access to an individual gitlab page (gitlab is a github-
like clone provided by ETH Ziirich). Finally, the communication that is
important for all groups and mentors will take place on a discord server.



2 List of Projects

2.1 Persistent Homology of Gerrymandering

The area of redistricting in the United States has gotten much attention
of late, as many groups work to quantify and evaluate plans as well as
designing tools and techniques which can evaluate the concept of “fairness”
in this domain. Motivated by recent work that uses tools from topological
data analysis in the domain of computational redistricting [1], one open area
is to apply tools more widely in this domain. In particular, this paper only
computes bottleneck distances given fixed voting data, but does not consider
other metrics such as optimal transport.

Problem 1. How does the data from [1] behave under different metrics?

It might also be of interest to study this data using Reeb graphs or
other shape descriptors from topological data analysis, rather than simple
persistence diagrams.

Problem 2. Can we find other types of structures in the data from [1]?

In a different direction, using the framework in [1], one could attempt to
locate areas in a state that are split differently in party-biased ensembles or
whose splitting correlates with party advantage.

Mentors: Erin Chambers, Anna Schenfisch, Tao Hou

References

[1] Moon Duchin, Tom Needham, and Thomas Weighill. The (homological)
persistence of gerrymandering, 2020.



2.2 The Shape of the Swiss Railway System

Both a country as well as the traffic systems in a country are inherently
geometric. However, the traffic system often has different geometric features
than the underlying country. For example, traffic systems are usually much
denser in areas where many people live. In contrast, there are often stretches
of land that are only sparsely inhabited, taking up a lot of space of the
country, but not providing much to the geometry of the traffic system.

In this project, the goal is to analyze geometric and topological features
of the Swiss Railway system. The relevant data for this is publicly available,
and it can be either treated as a finite metric space or as a network. Thus,
using methods from topological data analysis for finite metric spaces or for
graphs we can analyse the intrinsic and eztrinsic shape of Switzerland from
the perspective of travellers.

Mentors: Bastian Rieck, Tim Ophelders



2.3 Inverse Problem with Mapper Graphs

The Mapper algorithm is a popular tool for visualization and data explo-
ration in topological data analysis. The recent paper “Any graph is a Map-
per graph” [1] investigates an inverse problem for the Mapper algorithm:
Given a dataset X and a graph G, does there exist a set of Mapper param-
eters such that the output Mapper graph of X is isomorphic to G?7 Two
constructions are provided that affirmatively answer this question. Some
natural follow-up questions are:

e What are some other constructions?

e What are some constructions when we add constraints (e.g. reference
space is R, or when we use a particular type of clustering algorithm)?

e Is there anything we can say about “how big” the set of Mapper pa-
rameters is that work for a particular graph and dataset.

e For the construction that maps into convex sets in R?, what is the
map that allows for the largest extension?

e Write code that constructs convex sets in R whose nerve is G; starting
with subsets of R* is easier.

Mentors: Robin Belton, Enrique Alvarado

References

[1] Enrique G Alvarado, Robin Belton, Kang-Ju Lee, Sourabh Palande,
Sarah Percival, Emilie Purvine, and Sarah Tymochko. Any graph is
a mapper graph, 2024.
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Figure 1: An example of a political profile.

2.4 Holes in Swiss Politics?

For many elections in Switzerland, the webpage smartvote [1] publishes a
questionnaire that both voters and candidates can fill out. Based on the
questions, a political profile is created that includes scores in 8 axis. This
profile is visualised in a spider diagram, see Figure 1. Based on this profile,
smartvote gives voters a ranked list of candidates that most closely agree
with their profile, facilitating the choice between the many candidates and
parties in Swiss elections.

Smartvote has provided us with the data of all candidates of last year’s
Swiss Federal Elections. From a perspective of data analytics, each political
profile can be interpreted as a data point in R®. It is to be expected that
some of the 8 axis are correlated and that these data points form some
manifold. The goal of this project is to try and understand this manifold.

Problem 3. What are some topological properties of this “space of candi-
dates”? Does it have any non-trivial homology? What is its dimension? Is
there any curvature? Does it have singularities?

Mentors: Patrick Schnider, Simon Weber

References

[1] smartvote. https://www.smartvote.ch, 2024.



2.5 Insightful Applications of Hodge Decomposition / Har-
monic Representatives

Consider the p-th cohomology group HP(K;R) of a simplicial complex K
over the coefficient R, where each p-cochain is a linear map f : C,(K) — R.
The Hodge p-Laplacian A, : CP(K;R) — CP(K;R) is a linear map defined
as:

Ay 0p-10,_1 + 6,0,

where 6y, 6,1 are the coboundary maps and d,,0,_, are their adjoints.
The Hodge decomposition is then the following:

CP(K;R) = im(5,) @ ker(A,) @ im(d,-1).

We also have that ker(A,) is isomorphic to HP(K;R) (and hence Hy,(K;R))
and that each cocycle in ker(A,) is called harmonic which minimizes the
norm in the corresponding coset in HP(K;R).

The special cases of the things defined above are probably more well-
known: when K is a graph, Ay is the graph Laplacian, and when K is
two-dimensional, Ay is the graph Helmholtzian. Moreover, it is known that
the cochains are discrete analogues of differential forms on manifolds and the
coboundary operators are discrete analogues of exterior derivatives. Hence,
A7 is also

Ay : —grad div + curl*curl.

See [4] for a more detailed introduction to Hodge decomposition and har-
monic representatives.

In several works (e.g., [1,3,4,6]) the authors describe some applications of
Hodge decomposition. One of them is as follows: Consider a set V' of objects
to be ranked (such as movies). Here, we are given a pairwise ranking

X:F—->R

which can be considered a 1-cochain, where X (u,v) denotes how much the
object u is favored over v. Applying the Hodge decomposition in dim 1
gives:

X = grad(f) + Xg + curl*(®),

where f : V — R is a global scoring on the objects and X is harmonic.
Roughly speaking, grad(f) measures the consistency of the pairwise ranking
and X7, curl*(®) measure the (global and local) inconsistency of it.

Problem 4. Can we find other ‘natural’ and insightful applications of Hodge
decomposition as above?



On a separate note, [2] (and related work [5]) describe applications of
harmonic representatives (e.g., see below:)
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Figure 12 Recovered versus known circular coordinates using the Sparse Circular Coordinates
Algorithm and the Toroidal Coordinates Algorithm.

Figure 2: Taken from [5]

Problem 5. Can we find other interesting applications of harmonic cycles?

A more open one (note: there are already some works in the TDA com-
munity for this which are not listed here):

Problem 6. How can Hodge decomposition / harmonic representatives be
integrated into TDA in other ways?

Mentors: Tao Hou, Anna Schenfisch, Dev Sinha

References

[1] Michael J. Catanzaro and Brantley Vose. Harmonic representatives in
homology over arbitrary fields. Journal of Applied and Computational
Topology, 7(3):643-670, 2023.

[2] Vin De Silva and Mikael Vejdemo-Johansson. Persistent cohomology and
circular coordinates. In Proceedings of the twenty-fifth annual symposium
on Computational geometry, pages 227-236, 2009.
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2020.
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arXiv:2212.07201, 2022.
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2.6 The Space of Soccer Passes

In the sport of soccer!, one of the most common events is that of a pass,

where one player kicks the ball to another player. A pass is determined by
several factors, e.g. the position of the pass player on the field, the direction
and velocity of the pass, whether the pass was on the ground or in the air,
whether it was successful, etc. Each pass can thus be seen as a point in
some high-dimensional space X.

There are several data sets that collect this data for all passes played
during a match or even during a championship. Two publicly available
data sets are the StatsBomb data set [2] or the data from the Soccer Data
Challenge initiative [1]. More data and some projects can be found on Edd
Websters github page [3].

The goal of this project is to use topological data analysis to study soccer
passes. It is to be expected (and is also indicated by projection to R?) that
the passes that actually occur during games lie on some low-dimensional
subspace P of X.

Problem 7. What can we say about P? Is it connected? What is its
dimension? What is its homology? Is it a manifold?

Depending on tactics, different teams likely play different passes.

Problem 8. Can the space of passes be used to classify different teams in a
tournament? Does the space of passes of a single team change significantly
between different games?

Mentors: Patrick Schnider, Tim Ophelders

References

[1] Luca Pappalardo, Paolo Cintia, Alessio Rossi, Emanuele Massucco,
Paolo Ferragina, Dino Pedreschi, and Fosca Giannotti. A public data
set of spatio-temporal match events in soccer competitions. Scientific
data, 6(1):236, 2019.

[2] StatsBomb. Statsbomb open data. https://github.com/statsbomb/
open-data/blob/master/README.md, 2022.

[3] Edd Webster. Edd webster football analytics. https://github.com/
eddwebster/football_analytics, 2023.

L Also known as football.
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2.7 Dimensionality Reduction for Manifolds

Dimensionality reduction is an important technique in data science, and thus
many different methods have been proposed, ranging from classical projec-
tion tools like PCA to deep learning techniques combined with topological
ideas, e.g., topological autoencoders [1]. Of course, all of these methods will
lose some information, but generally different methods retain different types
of information. Depending on the application, it is thus important to choose
the correct method of dimensionality reduction.

A common assumption for many machine learning tasks is the so-called
manifold hypothesis, which assumes that the underlying data is sampled
from a manifold. Thus, it is a natural question to understand the behavior of
different dimensionality reduction methods for data sampled from manifolds.

In this project, the goal is to experimentally compare different dimen-
sionality reduction methods for data sampled from different manifolds, in
particular high-dimensional manifolds that appear in many contexts, such

as SO(n).

Mentors: Bastian Rieck, Robin Belton

References

[1] Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topo-
logical autoencoders. In Hal Daumé IIT and Aarti Singh, editors, Pro-
ceedings of the 37th International Conference on Machine Learning, vol-
ume 119 of Proceedings of Machine Learning Research, pages 7045-7054.
PMLR, 13-18 Jul 2020.

12



2.8 Persistence of generalized density functions

One potential way to infer the shape of a data set in R" is to define some
appropriate density function on R™ which intuitively should be higher in
areas where the data points are dense, and then computing the persistent
homology of the corresponding superlevelset or sublevelset filtration. Ideally,
the density function would further have some nice properties, e.g., that the
computation of persistent homology can be done efficiently, or that we get
some stability, e.g. that the bottleneck distance of two persistence diagrams
is bounded by the Hausdorff distance of the two data sets.

One example of such a function is the one which, given a set P of data
points in R™ assigns to a point x € R™ the distance to its closest point in P,
i.e., f(z) := minyep d(z,p). You can convince yourself that the persistence
diagram Dgmy p of the corresponding sublevelset filtration is exactly the
persistence diagram of the Cech filtration of P. In particular, from the
stability theorem for Cech filtrations we get that for two different data sets
P and @, the bottleneck distance of the persistence diagrams is bounded
from above ba the Hausdorff distance of P and @, that is,

dy(Dgmy,p, Dgmy o) < du(P, Q).

The goal of this project is to investigate for which functions we get such a
stability theorem. More formally, a generalized density function is a function
that takes as input a data set P in R™ and an additional point x € R" and
assigns a real value. In particular, for every P we get a function R” — R".

Problem 9. For which generalized density function do we have a stability
theorem?

There are of course some trivial ones, e.g. constant functions or any
function not depending on P, but as we have seen above there are also more
interesting examples.

Mentors: Patrick Schnider, Enrique Alvarado
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