THE LIST COLORING CONJECTURE

nicla bernasconi

topics

Introduction – The LCC Kernels and choosability Proof of the bipartite LCC

Introduction and the list coloring conjecture

vertex coloring

k-coloring of a graph G: labelling f: $\mathsf{V}(\mathsf{G}) \to \mathsf{S}$ with |S|=k. The labels are called colors A k-coloring is called proper if adjacent vertices have different colors G is k-colorable if it has a proper k-coloring Chromatic number: $\chi(G):= \min\{k \mid G \text{ is } k\text{-colorable}\}\}$

3-coloring Proper 3-coloring $\chi(\textsf{C}_5)$ =3

edge coloring

- k-edge-coloring of a graph G: labelling f: $\mathsf{E}(\mathsf{G}) \to \mathsf{S}$ with $\mathsf{|S|}$ =k.
- A k-edge-coloring is called proper if incident edges have different colors
- G is k-edge-colorable if it has a proper k-edgecoloring
- Chromatic index:

 χ ⁽G):= min{k|G is k-edge-colorable}

3-edge-coloring Proper 3-edge-coloring $\overline{\chi^{\prime}(C_5)}=3$

line graph

The line graph L(G) of a graph G is the graph with vertex set $V(L(G))=E(G)$ and edge set $E(L(G)) = \{ \{e, f\} \mid e \text{ incident with } f \}$

list coloring

List coloring is a more general concept of coloring a graph G is n-choosable if, given any set of n colors for each vertex, we can find a proper coloring

 C_5 is not 2-choosable

choice number

Choice number: $ch(G):= min\{n | G$ is n-choosable} The list chromatic index of H is the choice number of L(H)

Clearly: $\mathsf{ch}(\mathsf{G}) \ge \chi(\mathsf{G})$

ch(K_{3,3}) > $\chi(K_{3,3})$

list coloring conjecture

$\mathsf{ch}(\mathsf{G}) = \chi(\mathsf{G})$ whenever $\mathsf G$ is a line graph

Kernels and choosability

definitions

The outdegree of **v** is $d^+(v)=|\{u \mid v \rightarrow u\}|$ **A** The closed neighborhood of v is N[v] = {u| v → u or v=u } \rightarrow The underlying graph of D is G=(V,E') with $\mathsf{E}^\mathfrak{c}\,\mathsf{=}\,\{\{\mathsf{u},\mathsf{v}\}\vert\, \mathsf{u}\to\mathsf{v} \text{ or } \mathsf{v}\to\mathsf{u}\}$

kernel

A kernel of D is an independent set K \subseteq V s.t. \forall <code>v \in V $\mathsf{K}\,$ there exists an u \in K with v \rightarrow u</code> A kernel of S \subseteq V is a kernel of the subdigraph induced by S

(f:g)-choosable

Consider two functions f,g: V \rightarrow $\mathbb N$

G is (f:g)-choosable if, given any sets A_{v} of colors with $f(v)=|A_v|$, we can choose subsets $B_v \subseteq A_v$ with $g(v) = |B_v|$ such that $B_u \cap B_v = \emptyset$ whenever $\{u,v\} \in \mathsf{E}$

 \triangle Example: G is n-choosable if we take $f(v)$ =n and $g(v)=1$

lemma 1

Bondy, Boppana and Siegel Let D be a digraph in which i. every induced subdigraph has a kernel ii. f,g: $V(D) \rightarrow \mathbb{N}$ are so, that $f(v) \geq \sum$ g(u) whenever $g(v)$ >0 Then D is (f:g)-choosable $\mathsf{u}\mathsf{\in}\mathsf{N}$ [v]

Proof:

- Induction on $\sum g(v)$ $v \in V$
- \bullet • Given: sets A_v with $|A_v| = f(v)$
- •• Goal: find B_v with $|B_v|=g(v)$ and $B_u \cap B_v = \varnothing$ whenever u,v adjacent
- \bullet • Define W := $\{v \in V | g(v) > 0\}$
- v $v \in W$ $\mathsf{c}\in\mathsf{I}\;\;$ $\mathsf{I}\;\mathsf{A}$ $\in \bigcup$ • Choose color
- \bullet • Define S:= $\{v \in V | c \in A_v\}$
- Let K be a kernel of S

•• Define functions $f', g' \colon V(D) \to \mathbb{N}$ $\mathsf{g}^\,\mathsf{(v)}\!=\!\left\{\begin{aligned} &\mathsf{g}(\mathsf{v})\!-\!1 \ \ &\mathsf{g}(\mathsf{v}) \ \ &\mathsf{g}(\mathsf{v}) \ \ &\mathsf{(v}\not\in\mathsf{K}) \end{aligned}\right.$

$$
f'(v) = |A_v \setminus \{c\}| = \begin{cases} f(v) - 1 & (c \in A_v) \\ f(v) & (c \notin A_v) \end{cases}
$$

- •• i) holds, check ii)
- u∈N[v] u∈N[v] $\sum\;$ g '(u) $<\;\sum\;$ • We have that $\sum g'(u) < \sum g(u)$

$$
f'(v) \geq \sum_{u \in N[v \in J]} g'(u)
$$

- •• Induction hypothesis \Rightarrow G is (f':g')-choosable
- \bullet • This means: $\exists B_v' \subseteq A_v \setminus \{c\}$ with $|B_v'| = g'(v)$, s.t. $B_v' \cap B_v' = \emptyset$ if u, v adjacent
- •• Define $B_v := \begin{cases} B_v \cup \{c\} \\ B_v \end{cases}$ v $\mathsf{B}_{\mathsf{v}} \coloneqq \left\{ \begin{matrix} \mathsf{B}_{\mathsf{v}} \cup \{\mathsf{c}\} & (\mathsf{v} \in \mathsf{K}) \ & \mathsf{B}_{\mathsf{v}} \end{matrix} \right. \quad \left(\mathsf{v} \not\in \mathsf{K}\right)$ $\begin{bmatrix} B_v' \cup \{c\} & V \end{bmatrix}$ = $=\begin{cases} -v & (2) & (3) \\ B_v & (v \notin \end{cases}$
- •• It holds: $|B_v| = g(v)$ and $B_u \cap B_v = \emptyset$ if u, v adjacent
- \Rightarrow G is (f:g)-choosable

(m:n)-choosable

G is called (m:n)-choosable if it is (f:g)-choosable for the constant functions $f(v)=m$ and $g(v)=n$

corollary 1

Let D be a digraph in which i. the maximum outdegree is n-1 ii. every induced subdigraph has a kernel Then D is (kn:k)-choosable for every k. In particular D is n-choosable.

Proof of the bipartite LCC

definitions

An orientation of a graph G is any digraph having G as underying graph

- Let K be a set of vertices in a digraph. Then K absorbs a vertex **v** if $N[v] \cap K \neq \varnothing$.
- K absorbs a set S if K absorbs every vertex of S

↑ Example: a kernel of S is an independent subset of S that absorbs S

the bipartite LCC

Let H be a bipartite multigraph, and G:=L(H). Suppose that G is n-colorable. Then G is (kn:k)-choosable for every k. In particular G is n-choosable.

Proof:

- •• Let $V := V(G) = E(H)$
- •• Define A_x:={v∈V| v is incident with x, $x \in V(H)$ }. A_{x} is called row if x∈X, column if x∈Y
- •If v is a vertex of G, then $R(v)$ is the row and C(v) the column containing v
- \bullet • Take a proper coloring $f: V \rightarrow \{1,...,n\}$ of V
- Define an orientation D of G in which $u \rightarrow v$ if $R(u)=R(v)$ and $f(u)$ >f(v) or $C(u)=C(v)$ and $f(u) < f(v)$
- •Check i) and ii) of Corollary 1
- \bullet \bullet i): \checkmark (since f is one-to-one on N[v])
- \bullet • ii): induction on |S|
- Given S⊆V, show the existence of a kernel in S
- Define
	- \top := {v \in S| f(v)<f(u) whenever v≠u \in R(v) \cap S}
- T absorbs S
- \bullet If T is independent, then it's a kernel \checkmark
- •• Assume T is not independent, then it has two elements in the same column, say $v_1,v_2 \in T$ with $C(v_1)=C(v_2)=:C$, $f(v_1) < f(v_2)$
- •• Choose $v_0 \in C \cap S$ s.t. $f(v_0) < f(u)$ whenever $\overline{v}_0 \neq \overline{u} \in \overline{C} \cap S$
- •• Induction hypothesis \Rightarrow S\{v₀} has a kernel K, and K absorbs v_2 , this means N[v₂] \cap K $\neq \emptyset$
- \bullet • N[v₀] \cap K \supseteq N[v₂] \cap K \Rightarrow K absorbs v₀ \Rightarrow K is a kernel of S

 \bullet • Corollary 1 \Rightarrow D is (kn:k)-choosable \forall k

‡

 $\textbf{+} \Rightarrow$ G is (kn:k)-choosable for every k