
Posets,Chains and An-
tichains

• A poset (partially ordered set) is a set P
together with a binary relation ≤ which is
transitive (x < y and y < z implies x < z) and
irreflexive (x < y and y < x cannot both hold)

• x and y are comparable if x ≤ y and/or y ≤ x
hold

• A chain in a poset P is a subset C ⊆ P such
that any two elements in C are comparable

• An antichain in a poset P is a subset A ⊆ P
such that no two elements in A are
comparable
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Example
• An important poset is the set 2X(all subsets of

the set X with |X| = n) with set inclusion:
x < y if x ⊂ y

• This poset can be visualized by a Hasse
diagram
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Example(cont.)

• n=3:

{}

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}
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Decomposition of posets us-
ing antichains

• Want to partition the poset into antichains
• A poset with a chain of size r cannot be

partitioned into fewer than r antichains (Any
two elements of the chain must be in a
different antichain)

• Theorem: Suppose that the largest chain in
the P has size r. Then P can be partioned
into r antichains
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Example

• n=3 :
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Proof
• Define l(x) as the size of the longest chain

whose greatest element is x

• Define Ai as Ai := {x : l(x) = i}

• A1 ∪ ... ∪ Ar is a partition of P into r mutually
disjoint sets

• Every Ai is an antichain otherwise there
exists two points x, y so that x < y which
implies l(x) < l(y)
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Decomposition of posets us-
ing chains

• Want to partition the poset into chains
• A poset with an antichain of size r cannot be

partitioned into fewer than r chains (Any two
elements of the antichain must be in a
different chain)

• Dilworth’s theorem: Suppose that the largest
antichain in the P has size r. Then P can be
partioned into r chains
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Example

•
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Proof
• We argue by induction on the cardinality of P

• Let a be a maximal element in P ,n=size of the
largest antichain in P ′ = P − {a}

• P ′ has according to the induction hypothesis
a partition C1 ∪ ... ∪ Cn

• We show that P has either an antichain of
length n + 1 or it has a partition into n chains

• Let ai be the maximal element of Ci belonging
to an n element antichain
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Proof(cont.)
• A = {a1, .., an} is an antichain (Transitivity of
≤ implies that no two elements from different
Ci are comparable)

• If A ∪ {a} is an antichain we have the partition
C1 ∪ ... ∪ Cn ∪ {a} otherwise we have a > ai

for some i
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Proof(cont.)
• K = {a} ∪ {x ∈ Ci : x ≤ ai} is a chain in P

and there are no n-element antichains in
P − K because of the definition of ai and so
by induction we can decompose P −K into at
most n − 1 chains
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Symmetric chains
• We now consider the poset

2X := ({a ⊆ X},≤)

• The chain C = {A1, ..., Ak} is symmetric if
|A1| + |Ak| = n and |Ai+1| = |Ai| + 1 for all
i = 1, ..., k − 1

• Theorem: 2X can be partioned into
(

n
bn/2c

)

mutually disjoint symmetric chains
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Proof
• Every chain of the partition contains exactly

one set set with bn/2c elements, because the
chains are disjoint it follows that there are
(

n
bn/2c

)

chains

• We now show with induction on the cardinality
of X that there is a partition at all

• Let x be an arbitrary point in X and
Y = X − {x}
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Proof(cont.)
• By induction we can partition 2Y into

symmetric chains C1, ..., Cr

• For every chain Ci = A1 ⊂ ... ⊂ Ak in Y we
can produce two chains over X:
C ′

i = A1 ⊂ ... ⊂ Ak−1 ⊂ Ak ⊂ Ak ∪ {x} and
C ′′

i = A1 ∪ {x} ⊂ ... ⊂ Ak−1 ∪ {x}

• C ′
i is symmetric since

|A1|+|Ak ∪ {x}| = |A1|+|Ak|+1 = n−1+1 = n
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Proof(cont.)
• C ′′

i is symmetric since
|A1 ∪ {x}| + |Ak−1 ∪ {x}| = |A1| + |Ak−1| + 2 =
(n − 2) + 2 = n

• It remains to show that these chains form a
partition of X

• If A ⊆ Y then only C ′
i contains A

• If A = B ∪ {x}, if B is the maximal element of
Ci only C ′

i contains A otherwise it is in C ′′
i
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Memory allocation
• Let L be a sequence L = (a1, a2, ..., am) of not

necessarily distinct elements of a set X

• L contains a subset A of X if
A = (ai, ai+1, ..., ai+|A|−1) for some i

• A sequence L is universal if it contains all the
subsets of X
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An upper bound for the
length of an universal se-
quence

• A trivial upper bound can be obtained by
concatenating all subsets

• The resulting sequence has length n/2 · 2n

• Theorem(Lipski):There is a universal
sequence for X = {1, ..., n} of length at most
2
π2n
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Proof
• We prove the theorem for even n, n = 2k

• Let S = {1, ...k} be the set of the first k
elements and T = {k + 1, ..., 2k} the set of the
last k elements

• The posets corresponding to S and T can be
decomposed into m =

(

k
k/2

)

symmetric
chains: 2S = C1 ∪ ... ∪ Cm and
2T = D1 ∪ ... ∪ Dm
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Proof(cont.)
• We associate the sequence

Ci = (x1, x2, ..., xh) to the chain
Ci = {x1, ..., xj} ⊂ {x1, ..., xj , xj+1} ⊂ ... ⊂
{x1, ..., xh} where j + h = k. A similar
association of sequences to chains can be
done for the chains Di

• Every subset A of S is contained in a
Cj = (x1, x2, .., xh) : A = {x1, x2, ..., x|A|}
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Proof(cont.)
• Every subset A of T is contained in a

D̄j = (xh, xh−1, .., x1) : A = {x1, x2, ..., x|A|}

• Every subset A of X is contained in a
sequence D̄jCi from some i and j

• Thus if we concatenate all possible D̄jCi

sequences every subset A is contained in the
resulting sequence L
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Proof(cont.)
• The length of L is at most km2

• By Stirling’s formula
(

k
k/2

)

v 2k
√

2
kπ the length

of L is km2
v k 2

kπ22k = 2
π2n
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LYM
• LYM inequality: Let F be an antichain over a

set X of n elements then
∑

A∈F

(

n
|A|

)−1
≤ 1

• Corollary(Sperner’s theorem): Let F be a
family of subsets of an n element set. If F is
an antichain then |F| ≤

(

n
bn/2c

)

• Proof:By noting that an expression
(

n
|A|

)

is
maximized if |A| = bn/2c we get
|F| ·

(

n
bn/2c

)−1
≤

∑

A∈F

(

n
|A|

)−1
≤ 1

. – p.22/35



Proof(cont.)
• We associate with every A ⊆ X a

permutation on X

• A permutation (x1, x2, ..., xn) of X contains A
if (x1, ..., xa) = A

• Note that there are a!(n − a)! permutations
which contain A

• Because in F no set is a subset of another
set every permutation contains at most one
A ∈ F

• Therefore
∑

A∈F a!(n − a)! ≤ n! . – p.23/35



Bollobas’s theorem
• Theorem (Bollobas): Let A1, ..., Am and

B1, ..., Bm be two sequences of sets such that
Ai ∩ Bj = ∅ iff i = j then

∑m
i=1

(

ai+bi

ai

)−1
≤ 1

where ai = |Ai| and bi = |Bi|

• Theorem: Let A1, ..., Am and B1, ..., Bm be
finite sets such that Ai ∩ Bi = ∅ and
Ai ∩ Bj 6= ∅ if i < j. Also suppose that
|Ai| ≤ a and |Bi| ≤ b then m ≤

(

a+b
a

)
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Proof
• Let X be the union of all sets Ai ∪ Bi

• A permutation x1, ..., xn seperates a pair of
disjoint sets (A,B) if xk ∈ A and xl ∈ B imply
k < l
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Proof(cont.)
• Every permutation seperates at most one of

the pairs (Ai, Bi), i = 1...m

• Proof: Suppose that a permutation seperates
two pairs (Ai, Bi) and (Aj, Bj) with i 6= j and
assum w.l.o.g that
max{k : xk ∈ Ai} ≤ max{k : xk ∈ Aj}

• The permutation seperates (Aj, Bj) so it
follows min{l : xl ∈ Bj} > max{k : xk ∈
Aj} ≥ max{k : xk ∈ Ai} which implies
Ai ∩ Bj = ∅
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Proof(cont.)
• We now estimate the number of permutations

seperating one pair (Ai, Bi)

• We have
(

n
ai+bi

)

possibilities to select the
positions of Ai ∪ Bi in the permutation

• There are ai! possibilities to order Ai and bi!
possibilities to order Bi

• All elements not in Ai ∪ Bi can be chosen
without restriction so there are (n − ai − bi)!
possibilities

. – p.27/35



Proof(cont.)
• So we have

(

n
ai+bi

)

ai!bi!(n − ai − bi)! = n!
(

ai+bi

ai

)−1

permutations which seperate a pair (Ai, Bi)

• Summing up over all m pairs we get the
bound:

∑m
i=1

(

ai+bi

ai

)−1
≤ n!
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Union-free families
• A family of sets F is called r-union-free if

A0 * A1 ∪ A2 ∪ ... ∪ Arfor all distinct A0, ..., Ar

• If F is an antichain then it is 1-union-free
• Theorem(Füredi): Let F be a family of

subsets of an n-element set X and r ≥ 2. If F
is r-union-free then |F| ≤ r +

(

n
t

)

where
t :=

⌈

(n − r)/
(

r+1
2

)⌉
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Proof
• Define Ft as {A | A ∈ F and there exists a

t-element subset T ⊆ A s.t. T* A′ for every
other A′ ∈ F}

• Let Tt be the family of such t-element subsets
• Let F0 be {A ∈ F : |A| < t}

• Let T0 be the family of all t-element subsets
containing a set in F0
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Proof(cont.)
• F is r-unionfree for r ≥ 2 this implies that F

and every subset of it (including F0) are
antichains

• T0 and Tt are disjoint
• Proof : Assume a common element B. Then

there exists A,A′ ∈ F s.t. B ⊆ A and A′ ⊂ B
which implies A and A′ are comparable which
contradicts the antichain property of F
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Proof(cont.)
• We will show that the family
F ′ := F − (F0 ∪ Ft) has at most r members

• Together with |F0 ∪ Ft| ≤
(

n
t

)

(which we will
not prove) this proves the theorem

• A is in F ′ iff A ∈ F ,|A| ≥ t and for every
t-subset T ⊆ A there is an A′ ∈ F s.t. A′ 6= A
and A′ ⊇ T
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Proof(cont.)
• A ∈ F ′, A1, A2, ..., Ai ∈ F where i ≤ r imply
|A − (A1 ∪ ... ∪ Ai)| ≥ t(r − i) + 1

• We proof this statement by assuming the
opposite then we can write the set
A − (A1 ∪ ... ∪ Ai) as the union of (r − i)
t−element sets Ti+1, ...Tr

• A can be written as the union of A1, ..., Ar and
Ti+1, ..., Tr

• By the properties of A every Tj lies in an Aj

different from A
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Proof(cont.)
• Therefore A ⊆ A1 ∪ ... ∪ Ar which is a

contradiction to the r-union-free property of F
• Suppose F ′ has more than r members and

take any r + 1 of them A0, A1, ..., Ar ∈ F

• The union of all Ai can be written as
|A0| + |A1 − A0| + |A2 − (A0 ∪ A1)| + ... +
|Ar − (A0 ∪ A1 ∪ ... ∪ Ar−1)| ≥ (tr + 1) + (t(r −
1) + 1) + (t(r − 2) + 1) + ... + (t0 + 1) =

tr(r+1)
2 + r + 1 = t

(

r+1
2

)

+ r + 1
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Proof(cont.)
• By the choice of t the right-hand side exceeds

the total number of n points which is
impossible

• So F ′ has at most r elements
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