Posets,Chains and Antichains

- A poset (partially ordered set) is a set P together with a binary relation \leq which is transitive $(x < y$ and $y < z$ implies $x < z$) and irreflexive $(x < y$ and $y < x$ cannot both hold)
- x and y are comparable if $x\leq y$ and/or $y\leq x$ hold
- A chain in a poset P is a subset $C \subseteq P$ such that any two elements in C are comparable
- An antichain in a poset P is a subset $A\subseteq P$ such that no two elements in A are comparable

. – p.1/3!

Example

- An important poset is the set 2^X (all subsets of the set X with $\vert X\vert=n)$ with set inclusion: $x < y$ if $x \subset y$
- • This poset can be visualized by ^a Hasse diagram

. – p.2/3!

Example(cont.)

• n=3:

. – p.3/3!

Decomposition of posets using antichains

- \bullet Want to partition the poset into antichains
- A poset with a chain of size r cannot be partitioned into fewer than r antichains (Any two elements of the chain must be in a different antichain)
- •• Theorem: Suppose that the largest chain in the P has size $r.$ Then P can be partioned into r antichains

Example

 \cdot n=3

T,

Proof

- •• Define $l(x)$ as the size of the longest chain whose greatest element is x
- •• Define A_i as $A_i := \{x : l(x) = i\}$
- $A_1\cup...\cup A_r$ is a partition of P into r mutually disjoint sets
- •• Every A_i is an antichain otherwise there exists two points x, y so that $x < y$ which implies $l(x) < l(y)$

Decomposition of posets using chains

- \bullet Want to partition the poset into chains
- A poset with an antichain of size r cannot be partitioned into fewer than r chains (Any two elements of the antichain must be in a different chain)
- Dilworth's theorem: Suppose that the largest antichain in the P has size $r.$ Then P can be partioned into r chains

Proof

- •• We argue by induction on the cardinality of P
- •• Let a be a maximal element in P,n =size of the largest antichain in $P' = P - \{a\}$
- • \bullet P' has according to the induction hypothesis a partition $C_1 \cup ... \cup C_n$
- We show that P has either an antichain of length $n + 1$ or it has a partition into n chains
- •• Let a_i be the maximal element of C_i belonging to an n element antichain

- $A = \{a_1,..,a_n\}$ is an antichain (Transitivity of \leq implies that no two elements from different C_i are comparable)
- If $A\cup\{a\}$ is an antichain we have the partition $C_1\cup...\cup C_n\cup\{a\}$ otherwise we have $a>a_i$ for some *i*

• $K = \{a\} \cup \{x \in C_i : x \leq a_i\}$ is a chain in P and there are no n -element antichains in $P-K$ because of the definition of a_i and so by induction we can decompose $P - K$ into at most $n-1$ chains

Symmetric chains

- We now consider the poset $2^X := (\{a \subseteq X\}, \leq)$
- The chain $C=\{A_1,...,A_k\}$ is symmetric if $|A_1| + |A_k| = n$ and $|A_{i+1}| = |A_i| + 1$ for all $i=1,...,k-1$
- •• Theorem: 2^X can be partioned into $\binom{n}{\lfloor n/2\rfloor}$ mutually disjoint symmetric chains

Proof

- • Every chain of the partition contains exactly one set set with $\lfloor n/2 \rfloor$ elements, because the chains are disjoint it follows that there are $\binom{n}{\lfloor n/2\rfloor}$ chains
- We now show with induction on the cardinality of X that there is a partition at all
- •• Let x be an arbitrary point in X and $Y = X - \{x\}$

- •• By induction we can partition 2^Y into symmetric chains $C_1, ..., C_r$
- •• For every chain $C_i = A_1 \subset ... \subset A_k$ in Y we can produce two chains over X : $C_i' = A_1 \subset ... \subset A_{k-1} \subset A_k \subset A_k \cup \{x\}$ and $C_i'' = A_1 \cup \{x\} \subset ... \subset A_{k-1} \cup \{x\}$
- • $\bullet \: C_i'$ is symmetric since $|A_1|+|A_k \cup \{x\}| = |A_1|+|A_k|+1 = n-1+1 = n$

- • $\bullet \: C_i''$ is symmetric since $|A_1 \cup \{x\}| + |A_{k-1} \cup \{x\}| = |A_1| + |A_{k-1}| + 2 =$ $(n-2)+2=n$
- It remains to show that these chains form a partition of X
- If $A\subseteq Y$ then only C_i' contains A
- If $A=B\cup\{x\}$, if B is the maximal element of C_i only C_i^\prime contains A otherwise it is in $C_i^{\prime\prime}$

I

Memory allocation

- Let L be a sequence $L=(a_1,a_2,...,a_m)$ of not necessarily distinct elements of ^a set X
- L contains a subset A of X if $A=% \begin{bmatrix} 1\,,&1\,.&1\,. \end{bmatrix} \qquad \qquad \qquad \Delta _{0}\,=\,\frac{1}{2}\,\Delta _{0}\,+\frac{1}{2}\,\Delta _{1}\,+\frac{1}{2}\,\Delta _{2}\,+\frac{1}{2}\,\Delta _{2}\,+\frac{1}{2}\,\Delta _{3}\,+\frac{1}{2}\,\Delta _{4}\,+\frac{1}{2}\,\Delta _{5}\,+\frac{1}{2}\,\Delta _{6}\,+\frac{1}{2}\,\Delta _{7}\,+\frac{1}{2}\,\Delta _{8}\,+\frac{1}{2}\,\Delta _{1}\,+\frac{1}{2}\,\Delta _{1}\,+\frac{1}{2}\,\Delta$ $\boldsymbol{a}=(a_i, a_{i+1}, ..., a_{i+|A|-1})$ for some i
- A sequence L is *universal* if it contains all the subsets of X

An upper bound for the length of an universal sequence

- A trivial upper bound can be obtained by concatenating all subsets
- •• The resulting sequence has length $n/2 \cdot 2^n$
- •• Theorem(Lipski):There is a universal sequence for $X = \{1, ..., n\}$ of length at most 2 π 2^{n}

Proof

- •• We prove the theorem for even $n, n = 2k$
- Let $S=\{1,...k\}$ be the set of the first k elements and $T=\{k+1,...,2k\}$ the set of the last k elements
- •• The posets corresponding to S and T can be decomposed into $m = \binom{k}{k/2}$ symmetric chains: $2^S = C_1 \cup ... \cup C_m$ and $2^T = D_1 \cup ... \cup D_m$

- •• We associate the sequence $C_i = (x_1, x_2, ..., x_h)$ to the chain $C_i = \{x_1, ..., x_j\} \subset \{x_1, ..., x_j, x_{j+1}\} \subset ... \subset$ $\{x_1, ..., x_h\}$ where $j + h = k$. A similar association of sequences to chains can be done for the chains D_i
- •• Every subset A of S is contained in a $C_j = (x_1, x_2, ..., x_h)$: $A = \{x_1, x_2, ..., x_{|A|}\}$

- •• Every subset A of T is contained in a $\,D$ ¯ $j = (x_h, x_{h-1}, .., x_1)$: $A = \{x_1, x_2, ..., x_{|A|}\}$
- •• Every subset A of X is contained in a sequence D ¯ $\, {}_jC_i$ from some i and j
- •• Thus if we concatenate all possible D ¯ $\displaystyle _jC_i$ sequences every subset A is contained in the resulting sequence L

- •• The length of L is at most km^2
- •• By Stirling's formula $\binom{k}{k/2} \backsim 2^k\sqrt{\frac{2}{k\pi}}$ the length of L is $km^2 \backsim k \frac{2}{k\pi} 2^{2k} = \frac{2}{\pi} 2^n$

LYM

- LYM inequality: Let $\mathcal F$ be an antichain over a set X X of n elements then $\sum_{A\in F}\binom{n}{|A|}^{-1}\leq 1$
- •• Corollary(Sperner's theorem): Let ${\mathcal F}$ be a family of subsets of an n element set. If $\mathcal F$ is an antichain then $|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}$
- •• Proof:By noting that an expression $\binom{n}{|A|}$ is maximized if $|A| = |n/2|$ we get $|\mathcal{F}| \cdot {n \choose \lfloor n/2 \rfloor}^{-1} \leq \sum_{A \in \mathcal{F}} {n \choose |A|}^{-1} \leq 1$

- •• We associate with every $A\subseteq X$ a permutation on X
- A permutation $(x_1, x_2, ..., x_n)$ of X contains A if $(x_1,...,x_a)=A$
- •• Note that there are $a!(n-a)!$ permutations which contain A
- Because in $\mathcal F$ no set is a subset of another set every permutation contains at most one $A\in\mathcal{F}$

•• Therefore $\sum_{A\in\mathcal{F}} a!(n-a)! \leq n!$. \blacksquare

Bollobas's theorem

- Theorem (Bollobas): Let $A_1, ..., A_m$ and $B_1, ..., B_m$ be two sequences of sets such that $A_i \cap B_j = \emptyset$ iff $i = j$ then $\sum_{i=1}^m \binom{a_i+b_i}{a_i}^{-1} \leq 1$ where $a_i=|A_i|$ and $b_i=|B_i|$
- •• Theorem: Let $A_1,...,A_m$ and $B_1,...,B_m$ be finite sets such that $A_i \cap B_i = \emptyset$ and $A_i \cap B_j \neq \emptyset$ if $i < j.$ Also suppose that $|A_i| \leq a$ and $|B_i| \leq b$ then $m \leq \binom{a+b}{a}$

Proof

- Let X be the union of all sets $A_i\cup B_i$
- A permutation $x_1, ..., x_n$ seperates a pair of disjoint sets (A, B) if $x_k \in A$ and $x_l \in B$ imply $k < l$

- • Every permutation seperates at most one of the pairs $(A_i, B_i), i = 1...m$
- • Proof: Suppose that ^a permutation seperates two pairs (A_i, B_i) and (A_i, B_j) with $i \neq j$ and assum w.l.o.g that $\max\{k : x_k \in A_i\} \leq max\{k : x_k \in A_i\}$
- •• The permutation seperates (A_j, B_j) so it follows $min\{l : x_l \in B_j\} > max\{k : x_k \in$ A_i } $\geq max\{k : x_k \in A_i\}$ which implies $A_i \cap B_j = \emptyset$

- We now estimate the number of permutations seperating one pair (A_i, B_i)
- •• We have $\binom{n}{a_i+b_i}$ possibilities to select the positions of $A_i \cup B_i$ in the permutation
- •• There are $a_i!$ possibilities to order A_i and $b_i!$ possibilities to order B_i
- All elements not in $A_i\cup B_i$ can be chosen without restriction so there are $(n - a_i - b_i)!$ possibilities

- So we have $\binom{n}{a_i+b_i} a_i!b_i! (n-a_i-b_i)! = n! \binom{a_i+b_i}{a_i}^{-1}$ permutations which seperate a pair (A_i, B_i)
- •• Summing up over all m pairs we get the bound: $\sum_{i=1}^m \binom{a_i+b_i}{a_i}^{-1} \leq n!$

Union-free families

- A family of sets ${\mathcal F}$ is called r -union-free if $A_0 \nsubseteq A_1 \cup A_2 \cup ... \cup A_r$ for all distinct $A_0,...,A_r$
- If $\mathcal F$ is an antichain then it is 1-union-free
- •• Theorem(Füredi): Let ${\mathcal F}$ be a family of subsets of an n -element set X and $r\geq 2.$ If ${\mathcal F}$ is r-union-free then $|\mathcal{F}| \leq r + \binom{n}{t}$ where $t :=$ $=\big\lceil (n-r)/(\tfrac{r+1}{2}) \big\rceil$

Proof

- •• Define \mathcal{F}_t as $\{A \mid A \in \mathcal{F}$ and there exists a t-element subset $T \subseteq A$ s.t. $T \nsubseteq A'$ for every other $A' \in \mathcal{F}$
- •• Let \mathcal{T}_t be the family of such t -element subsets
- •• Let \mathcal{F}_0 be $\{A \in F : |A| < t\}$
- •• Let \mathcal{T}_0 be the family of all t -element subsets containing a set in \mathcal{F}_0

- •• ${\mathcal F}$ is r-unionfree for $r\geq 2$ this implies that ${\mathcal F}$ and every subset of it (including \mathcal{F}_0) are antichains
- \mathcal{T}_0 and \mathcal{T}_t are disjoint
- Proof : Assume a common element B . Then there exists $A, A' \in F$ s.t. $B \subseteq A$ and $A' \subset B$ which implies A and A' are comparable which contradicts the antichain property of $\mathcal F$

- We will show that the family $\mathcal{F}' := \mathcal{F} - (\mathcal{F}_0 \cup \mathcal{F}_t)$ has at most r members
- •• Together with $|\mathcal{F}_0\cup \mathcal{F}_t|\leq \binom{n}{t}$ (which we will not prove) this proves the theorem
- A is in \mathcal{F}' iff $A\in \mathcal{F},$ $|A|\geq t$ and for every t-subset $T \subseteq A$ there is an $A' \in \mathcal{F}$ s.t. $A' \neq A$ and $A' \supset T$

- $A \in \mathcal{F}'$, $A_1, A_2, ..., A_i \in \mathcal{F}$ where $i \leq r$ imply $|A - (A_1 \cup ... \cup A_i)| \ge t(r - i) + 1$
- • We proof this statement by assuming the opposite then we can write the set $A-(A_1\cup...\cup A_i)$ as the union of $(r-i)$ t–element sets $T_{i+1},...T_r$
- A can be written as the union of $A_1, ..., A_r$ and $T_{i+1},...,T_{r}$ i.
- • \bullet By the properties of A every T_j lies in an A_j different from A – p.33/3!

- Therefore $A\subseteq A_1\cup...\cup A_r$ which is a contradiction to the r-union-free property of $\mathcal F$
- •• Suppose \mathcal{F}' has more than r members and take any $r + 1$ of them $A_0, A_1, ..., A_r \in \mathcal{F}$
- •• The union of all A_i can be written as $|A_0| + |A_1 - A_0| + |A_2 - (A_0 \cup A_1)| + ... +$ $|A_r - (A_0 \cup A_1 \cup ... \cup A_{r-1})| \ge (tr+1) + (t(r-1))$ $1) + 1) + (t(r - 2) + 1) + ... + (t0 + 1) =$ $t\,$ $t\frac{r(r+1)}{2} + r + 1 = t\binom{r+1}{2} + r + 1$

- •• By the choice of t the right-hand side exceeds the total number of n points which is impossible
- So \mathcal{F}' has at most r elements

