
Schedule of the talk

• Linear Algebra: Reminder

• Fisher’s inequality

• Vapnik-Chervonenkis dimension

• Sets with few intersection sizes

• Constructive Ramsey graphs

• The flipping cards game
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Linear Algebra: Reminder (1)

Let V be a vector space over a field F, v1, . . . , vn ∈ V .

The vectors v1, . . . , vn are linearly independent if there
is no linear relation

λ1v1 + · · ·+ λnvn = 0

with λi 6= 0 for at least one i.

The set

span{v1, . . . , vn} = {λ1v1 + · · ·+ λnvn : λ1, . . . , λn ∈ F}
is called the span of v1, . . . , vn and a subspace of V .

A basis of V is a set of linearly independent vectors
whose span is V . The cardinality of each basis equals
the dimension of V .

Proposition 1 (linear algebra bound) If v1, . . . , vk

are linearly independent vectors in V , then k ≤ dimV .

Examples:

Fn is a vector space over F of dimension n with basis
e1, . . . , en, where ei = (0, . . . ,0, 1

↑
i

,0, . . . ,0).

The subspace span{v1, . . . , vn} ⊆ V has dimension at
most n and its dimension is exactly n iff v1, . . . , vn are
linearly independent.

2



Linear Algebra: Reminder (2)

In the vector space V = Rn we use the Euclidean
standard scalar product defined by

〈u, v〉 = u1v1 + · · ·+ unvn =
n∑

i=1

uivi

for two vectors u = (u1, . . . , un) and v = (v1, . . . , vn).

Properties:

• 〈u, v〉 = 〈v, u〉

• 〈λu + µv, w〉 = λ〈u, w〉+ µ〈v, w〉

• 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 ⇔ v = 0.

for all u, v, w ∈ Rn and λ, µ ∈ R

Example:

A1, A2 ⊆ {1, . . . , n} Ã v1, v2 ∈ {0,1}n ⊆ Rn (incidence
vectors):

vi = (vi1, . . . , vin) where vij =

{
1 , j ∈ Ai

0 , j 6∈ Ai
, i = 1,2

〈v1, v2〉 = |A1 ∩A2|
〈vi, vi〉 = |Ai|, i = 1,2
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Fisher’s inequality

Theorem 1 (Majumdar 1953) Let A1, . . . , Am be dis-
tinct subsets of {1, . . . , n} such that |Ai ∩ Aj| = k for
some fixed 1 ≤ k ≤ n for every i 6= j. Then m ≤ n.

Proof. (Babai and Frankl 1992)

vi ∈ Rn, 1 ≤ i ≤ m : incidence vectors of Ai

Goal: v1, . . . , vm are linearly independent in Rn.

Assume
∑m

i=1 λivi = 0 for some λ1, . . . , λm ∈ R.

Using

〈vi, vj〉 = |Ai ∩Aj| =
{
|Ai| , i = j
k , i 6= j

we conclude

0 =

〈∑

i

λivi,
∑

j

λjvj

〉
=

∑

i

λ2
i |Ai|+

∑

i 6=j

λiλjk

=
∑

i

λ2
i (|Ai| − k) + k


∑

i

λ2
i +

∑

i6=j

λiλj




=
∑

i

λ2
i (|Ai| − k) +

(∑

i

λi

)2

.
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Since |Ai| ≥ k for all i we must have

λ1 + · · ·+ λm = 0 (1)
λ2

i (|Ai| − k) = 0 for i = 1, . . . , m (2)

Assume there is an i with λi 6= 0.

(2)⇒ |Ai| = k

⇒ |Aj| > k for all j 6= i

(2)⇒ λj = 0 for all j 6= i

We end up with λ1+ · · ·+λm = λi 6= 0, a contradiction
to (1). Consequently,

λ1 = · · · = λm = 0.

¤
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Vapnik-Chervonenkis dimension

F: family of subsets of an n-element set X

Y ⊆ X is shattered by F if {E ∩ Y : E ∈ F} = P(Y )

F is (n, k)-dense if there is a Y ⊆ X with |Y | = k
such that Y is shattered by F.

Remark: F (n, k)-dense ⇒ F (n, l)-dense for all l < k

The Vapnik-Chervonenkis dimension of F is the
largest k for which F is (n, k)-dense.

Theorem 2 If |F| > ∑k−1
i=0

(
n
i

)
then the Vapnik-Chervo-

nenkis dimension of F is at least k.

Proof. (Frankl and Pach 1983)

F = {E1, . . . , Es}
S1, . . . , Sr: All subsets of X of size at most k − 1

Define the s× r matrix M = (mij) by

mij =

{
1 , Ei ⊇ Sj

0 , otherwise
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Since s > r, the rows mi = (mi1, . . . , mir), 1 ≤ i ≤ s
cannot be linearly independent as elements of Rr, i.e.
there are λ1, . . . , λs not all zero such that

s∑

i=1

λimi = 0. (3)

Set for T ⊆ X

g(T ) :=
∑

i:Ei⊇T

λi.

For j = 1, . . . , r we have

g(Sj) =
∑

i:Ei⊇Sj

λi =
s∑

i=1

λimij
(3)
= 0 (4)

There is a T ⊆ X with g(T ) 6= 0.

Choose a subset Y ⊆ X of minimum cardinality such
that g(Y ) 6= 0. By (4), |Y | ≥ k.

Goal: Y is shattered by F.
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Let Z ⊆ Y . Because of the minimality of Y we get

0 6= (−1)|Y \Z|g(Y )

=
∑

T :Z⊆T⊆Y

(−1)|T\Z|g(T )

=
∑

T :Z⊆T⊆Y

(−1)|T\Z|
∑

i:Ei⊇T

λi

=
∑

i:Ei⊇Z

λi

∑

T :Z⊆T⊆Y ∩Ei

(−1)|T\Z|

=
∑

i:Ei∩Y =Z

λi

since for A ⊆ B with n = |B\A|
∑

T :A⊆T⊆B

(−1)|T\A| =
n∑

k=0

(n

k

)
(−1)k =

{
1 , n = 0
0 , n ≥ 1

.

Therefore there must be a member Ei of F such that
Ei ∩ Y = Z. ¤
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Function spaces

F arbitrary field, Ω ⊆ Fn

FΩ := {f | f : Ω → F}: vector space over F

Lemma 1 For i = 1, . . . , m let fi ∈ FΩ and vi ∈ Ω such
that

• fi(vi) 6= 0 for all i

• fi(vj) = 0 for all j < i.

Then f1, . . . , fm are linearly independent in FΩ.

Proof. Assume there is a linear relation

λ1f1 + · · ·+ λmfm = 0 (5)

with not all λi = 0. Take the smallest j for which
λj 6= 0. Then (5) evaluated at vj yields

0 = λ1f1(vj)+ · · ·+ λjfj(vj)+ · · ·+ λnfn(vj) = λjfj(vj)

and hence λj = 0 because fj(vj) 6= 0, a contradiction.

¤
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Sets with few intersection sizes (1)

F: family of subsets of {1, . . . , n}, L ⊆ {0, . . . , n}

F is L-intersecting if |A∩B| ∈ L for all distinct mem-
bers A, B of F.

Theorem 3 (Frankl and Wilson 1981) If F is L-inter-

secting, then |F| ≤ ∑|L|
i=0

(
n
i

)
.

Proof.

F = {A1, . . . , Am}, |A1| ≤ |A2| ≤ · · · ≤ |Am|
v1, . . . , vm ∈ {0, 1}n incidence vectors of A1, . . . , Am

Define for Ω = {0, 1}n in RΩ for i = 1, . . . , m the
polynomial functions

fi(x) =
∏

l∈L: l<|Ai|
(〈vi, x〉 − l) , x ∈ Ω.

Note that

• fi(vi) 6= 0 for all i (since 〈vi, vi〉 = |Ai|)
• fi(vj) = 0 for all j < i (〈vi, vj〉 = |Ai ∩Aj|︸ ︷︷ ︸

∈L

< |Ai|)
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Hence, by lemma 1, f1, . . . , fm are linearly independent
in RΩ.

Each fi is in the span of pure monomials xi1xi2 . . . xis

with i1 < i2 < · · · < is and degree s ≤ |L| because
y2 = y for y ∈ {0, 1}.

Since the dimension of this span is at most
∑|L|

s=0

(
n
s

)
,

the theorem follows. ¤

Theorem 4 (Deza, Frankl and Singhi 1983) Let p be
a prime number and L and F as above. If

• |Ai| 6∈ L (mod p) for all i

• |Ai ∩Aj| ∈ L (mod p) for all i 6= j

then |F| ≤ ∑|L|
i=0

(
n
i

)
.
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Proof.

v1, . . . , vm ∈ {0, 1}n incidence vectors of A1, . . . , Am

Define for Ω = {0, 1}n in (Fp)Ω for i = 1, . . . , m the
polynomial functions

fi(x) =
∏

l∈L

(〈vi, x〉 − l) , x ∈ Ω.

Note that

• fi(vi) 6= 0 for all i (since 〈vi, vi〉 = |Ai|)
• fi(vj) = 0 for all j 6= i (since 〈vi, vj〉 = |Ai ∩Aj|)

Hence, by lemma 1, f1, . . . , fm are linearly independent
in (Fp)Ω.

The theorem follows as in the previous proof. ¤
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Constructive Ramsey graphs

A clique is a set of pairwise adjacent vertices in a
graph.

An independent set is a set of pairwise non-adjacent
vertices in a graph.

A graph is a Ramsey graph with respect to t if it has
no clique and no independent set of size t.

Erdős (1947): Proved the existence of Ramsey graphs
of order n = b2t/2c using the probabilistic method.

Aim: explicitely construct Ramsey graphs with re-
spect to a fixed t of large order

Order n = (t − 1)2: disjoint union of t − 1 cliques of
size t− 1 each (Turán)
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Ramsey graph of order n = Ω(t3)

Construction by Zsigmond Nagy (1972)

vertex set: all subsets of {1, . . . , t− 1} of size 3

edge set E: {A, B} ∈ E ⇔ |A ∩B| = 1

Verification. Let A1, . . . , Am be a clique. We have
|Ai ∩ Aj| = 1 for every i 6= j. Hence, m ≤ t − 1 by
Fisher’s inequality.

Let A1, . . . , Am be an independent set with incidence
vectors v1, . . . , vm ∈ (F2)t−1. We have |Ai ∩Aj| ∈ {0,2}
for all i 6= j. Therefore we get in F2

〈vi, vj〉 = |Ai ∩Aj| =
{

0 , i 6= j
1 , i = j

Assume there is a linear relation

λ1v1 + · · ·+ λmvm = 0

over F2. Then we get for every i

λi = 〈λ1v1 + · · ·+ λmvm, vi〉 = 〈0, vi〉 = 0.

Therefore v1, . . . , vm are linearly independent in (F2)t−1

and hence m ≤ t− 1.
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Ramsey graph of order tΩ(ln t/ ln ln t)

Construction by Frankl (1977)

Define for a prime number p the graph Gp by

Vertex set: all subsets of {1, . . . , p3} of size p2 − 1

Edge set E: {A, B} ∈ E ⇔ |A ∩B| 6≡ −1 (mod p)

Theorem 5 The graph Gp is a Ramsey graph with

respect to
∑p−1

i=0

(
p3

i

)
+ 1.

Remark. The theorem yields for a fixed t a Ramsey
graph of order tΩ(ln t/ ln ln t).

Proof. Let A1, . . . , Am be an independent set. We
have

|Ai ∩Aj| ∈ {p− 1,2p− 1, . . . , p2 − p− 1}
for every i 6= j. By Theorem 3,

m ≤
p−1∑

i=0

(p3

i

)
.
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A clique of size m consists of sets A1, . . . , Am with

• |Ai ∩Aj| 6≡ −1 (mod p) for every i 6= j

• |Ai| ≡ −1 (mod p) for all i.

Applying Theorem 4 with L = {0, . . . , p− 2}, we con-
clude

m ≤
p−1∑

i=0

(p3

i

)
.

¤

Verification of the remark. By the theorem, Gp for

p = max{q prime:
∑q−1

i=0

(
q3

i

)
< t} is a Ramsey graph

with respect to t for any t.

It is of order

n =
( p3

p2 − 1

)
≥

(
p3

p2 − 1

)p2−1

= pΩ(p2).
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Furthermore, we have, since there is a prime between
N and 2N for any integer N

t ≤
2p−1∑

i=0

((2p)3

i

)
≤ 2p

( (2p)3

2p− 1

)
≤ (2p)6p−2 = pO(p).

This yields

p = Ω(ln t/ ln ln t)

since for sufficiently large t

(
ln t

ln ln t

) ln t

ln ln t

< t

and we get

n = pΩ(p2) = tΩ(p) = tΩ(ln t/ ln ln t).
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The flipping cards game

u = (u1, . . . , un), v = (v1, . . . , vn) ∈ {0,1}n

Probe: 0-1 vector of length n containing exactly one
bit of each pair ui, vi, e.g. (v1, u2, u3, . . . , un)

Goal: Decide whether u = v with probes and using as
little non-reusable memory as possible

Theorem 6 (J. Edmonds, R. Impagliazzo) For
n = r2 it is possible to test the equality of u, v
using only r + 1 probes and writing down only r bits
in the memory.

Proof.

u = (u1, . . . , ur), ui ∈ {0,1}r

v = (v1, . . . , vr), vi ∈ {0,1}r

Consider the following protocol:

Probe 0: (u1, . . . , ur)

Ã write down w0 := u1+ · · ·+ur mod 2 in the memory
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For 1 ≤ i ≤ r:

Probe i: (u1, . . . , ui−1, vi, ui+1, . . . , ur)

Ã wi := u1 + · · ·+ ui−1 + vi + ui+1 + · · ·+ ur mod 2

Stop and report u 6= v if w0 6= wi

Answer u = v at the end if not u 6= v reported

This protocol reports u 6= v ⇔ ui 6= vi for some
1 ≤ i ≤ r ⇔ u 6= v ¤

Theorem 7 (Pudlák, Sgall 1997) It is possible to test
the equality of u, v using only O(logn) probes and
writing down only O((logn)2) bits in the memory.

Proof. Note that

u = v ⇔ 0 = 〈u− v, u− v〉 = 〈u, u〉+ 〈v, v〉 − 2〈u, v〉

=
n∑

i=1

u2
i +

n∑

i=1

v2
i − 2




n∑

i=1

ui

n∑

i=1

vi −
∑

i6=j

uivj



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Probe 1: (u1, . . . , un)

Ã
∑n

i=1 u2
i ,

∑n
i=1 ui

Probe 2: (v1, . . . , vn)

Ã
∑n

i=1 v2
i ,

∑n
i=1 vi

Probe 3: (u1, . . . , ubn

2
c, vbn

2
c+1, . . . , vn)

Ã
∑bn

2
c

i=1

∑n
j=bn

2
c+1 uivj

Probe 4: (v1, . . . , vbn

2
c, ubn

2
c+1, . . . , un)

Ã
∑n

i=bn

2
c+1

∑bn

2
c

j=1 uivj

Probe 5: (u1, . . . , ubn

4
c, vbn

4
c+1, . . . , vbn

2
c, ubn

2
c+1, . . . , ub3n

4
c,

vb3n

4
c+1, . . . , vn)

Ã
∑bn

4
c

i=1

∑bn

2
c

j=bn

4
c+1 uivj +

∑b3n

4
c

i=bn

2
c+1

∑n
j=b3n

4
c+1 uivj

Continue like that until you have considered all prod-
ucts uivj for i 6= j and finally sum all values stored in
the memory up to get 〈u− v, u− v〉.

This protocol needs 2dlogne+ 2 probes and for each
memorized number 2dlog(n+1)e bits of memory (since
all these numbers lie between 0 and n2). ¤
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