Schedule of the talk

- Linear Algebra: Reminder
- Fisher's inequality
- Vapnik-Chervonenkis dimension
- Sets with few intersection sizes
- Constructive Ramsey graphs
- The flipping cards game

Linear Algebra: Reminder (1)

Let V be a vector space over a field \mathbb{F} , $v_1, \ldots, v_n \in V$.

The vectors v_1, \ldots, v_n are linearly independent if there is no linear relation

 $\lambda_1v_1+\cdots+\lambda_nv_n=0$

with $\lambda_i \neq 0$ for at least one *i*.

The set

 $span\{v_1,\ldots,v_n\} = \{\lambda_1v_1 + \cdots + \lambda_nv_n : \lambda_1,\ldots,\lambda_n \in \mathbb{F}\}\$ is called the span of v_1, \ldots, v_n and a subspace of V.

A basis of V is a set of linearly independent vectors whose span is V . The cardinality of each basis equals the **dimension** of V .

Proposition 1 (linear algebra bound) If v_1, \ldots, v_k are linearly independent vectors in V, then $k \leq \dim V$.

Examples:

 \mathbb{F}^n is a vector space over $\mathbb F$ of dimension n with basis e_1, \ldots, e_n , where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$.

> ↑ i

The subspace span $\{v_1, \ldots, v_n\} \subseteq V$ has dimension at most n and its dimension is exactly n iff v_1, \ldots, v_n are linearly independent.

Linear Algebra: Reminder (2)

In the vector space $V = \mathbb{R}^n$ we use the Euclidean standard scalar product defined by

$$
\langle u, v \rangle = u_1 v_1 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i
$$

for two vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$.

Properties:

$$
\bullet \ \langle u, v \rangle = \langle v, u \rangle
$$

•
$$
\langle \lambda u + \mu v, w \rangle = \lambda \langle u, w \rangle + \mu \langle v, w \rangle
$$

• $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0 \Leftrightarrow v = 0$.

for all $u, v, w \in \mathbb{R}^n$ and $\lambda, \mu \in \mathbb{R}$

Example:

 $A_1, A_2 \subseteq \{1, \ldots, n\} \leadsto v_1, v_2 \in \{0,1\}^n \subseteq \mathbb{R}^n$ (incidence vectors):

$$
v_i = (v_{i1}, \ldots, v_{in})
$$
 where $v_{ij} = \begin{cases} 1, & j \in A_i \\ 0, & j \notin A_i \end{cases}$, $i = 1, 2$

$$
\begin{array}{rcl}\n\langle v_1, v_2 \rangle & = & |A_1 \cap A_2| \\
\langle v_i, v_i \rangle & = & |A_i|, \ i = 1, 2\n\end{array}
$$

3

Fisher's inequality

Theorem 1 (Majumdar 1953) Let A_1, \ldots, A_m be distinct subsets of $\{1,\ldots,n\}$ such that $|A_i \cap A_j| = k$ for some fixed $1 \leq k \leq n$ for every $i \neq j$. Then $m \leq n$.

Proof. (Babai and Frankl 1992) $v_i \in \mathbb{R}^n, \, \ 1 \leq i \leq m$: incidence vectors of A_i Goal: v_1, \ldots, v_m are linearly independent in \mathbb{R}^n . Assume $\sum_{i=1}^m \lambda_i v_i = 0$ for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$.

Using

$$
\langle v_i, v_j \rangle = |A_i \cap A_j| = \begin{cases} |A_i|, & i = j \\ k, & i \neq j \end{cases}
$$

we conclude

$$
0 = \left\langle \sum_{i} \lambda_{i} v_{i}, \sum_{j} \lambda_{j} v_{j} \right\rangle = \sum_{i} \lambda_{i}^{2} |A_{i}| + \sum_{i \neq j} \lambda_{i} \lambda_{j} k
$$

$$
= \sum_{i} \lambda_{i}^{2} (|A_{i}| - k) + k \left(\sum_{i} \lambda_{i}^{2} + \sum_{i \neq j} \lambda_{i} \lambda_{j} \right)
$$

$$
= \sum_{i} \lambda_{i}^{2} (|A_{i}| - k) + \left(\sum_{i} \lambda_{i} \right)^{2}.
$$

4

Since $|A_i| \geq k$ for all i we must have

$$
\lambda_1 + \dots + \lambda_m = 0
$$
\n
$$
\lambda_i^2(|A_i| - k) = 0 \text{ for } i = 1, \dots, m
$$
\n(1)\n(2)

Assume there is an i with $\lambda_i \neq 0$.

$$
\overset{(2)}{\Rightarrow} |A_i| = k
$$

\n
$$
\Rightarrow |A_j| > k \text{ for all } j \neq i
$$

\n
$$
\overset{(2)}{\Rightarrow} \lambda_j = 0 \text{ for all } j \neq i
$$

We end up with $\lambda_1+\cdots+\lambda_m=\lambda_i\neq 0$, a contradiction to (1). Consequently,

$$
\lambda_1=\cdots=\lambda_m=0.
$$

 \Box

Vapnik-Chervonenkis dimension

 F : family of subsets of an n-element set X

 $Y \subseteq X$ is shattered by $\mathcal F$ if $\{E \cap Y : E \in \mathcal F\} = \mathcal P(Y)$

F is (n, k) -dense if there is a $Y \subseteq X$ with $|Y| = k$ such that Y is shattered by \mathcal{F} .

Remark: $\mathcal{F}(n, k)$ -dense $\Rightarrow \mathcal{F}(n, l)$ -dense for all $l < k$

The Vapnik-Chervonenkis dimension of $\mathcal F$ is the largest k for which F is (n, k) -dense.

Theorem 2 If $|\mathcal{F}| >$ $\sum_{i=0}^{k-1}$ (n i ¢ then the Vapnik-Chervonenkis dimension of \overline{F} is at least k.

Proof. (Frankl and Pach 1983)

 $\mathcal{F} = \{E_1, \ldots, E_s\}$ S_1, \ldots, S_r : All subsets of X of size at most $k-1$

Define the $s \times r$ matrix $M = (m_{ij})$ by

$$
m_{ij} = \left\{ \begin{array}{ll} 1 & , & E_i \supseteq S_j \\ 0 & , & \text{otherwise} \end{array} \right.
$$

Since $s > r$, the rows $m_i = (m_{i1}, \ldots, m_{ir}), \; 1 \leq i \leq s$ cannot be linearly independent as elements of \mathbb{R}^r , i.e. there are $\lambda_1, \ldots, \lambda_s$ not all zero such that

$$
\sum_{i=1}^{s} \lambda_i m_i = 0. \tag{3}
$$

Set for $T \subseteq X$

$$
g(T) := \sum_{i: E_i \supseteq T} \lambda_i.
$$

For $j = 1, \ldots, r$ we have

$$
g(S_j) = \sum_{i: E_i \supseteq S_j} \lambda_i = \sum_{i=1}^s \lambda_i m_{ij} \stackrel{(3)}{=} 0 \tag{4}
$$

There is a $T \subseteq X$ with $g(T) \neq 0$.

Choose a subset $Y \subseteq X$ of minimum cardinality such that $g(Y) \neq 0$. By (4), $|Y| \geq k$.

Goal: Y is shattered by $\mathcal{F}.$

Let $Z \subseteq Y$. Because of the minimality of Y we get $0 \ \neq \ \ (-1)^{|Y \setminus Z|} g(Y)$ = $\frac{1}{\sqrt{2}}$ $T:Z{\subseteq}T{\subseteq}Y$ $(-1)^{|T\setminus Z|}g(T)$ = $\sum_{\alpha=1}^{\infty}$ $T:Z{\subseteq}T{\subseteq}Y$ $(-1)^{|T\setminus Z|}$ \sum $i: E_i \square T$ λ_i = $\overline{\mathbf{y}}$ i: $E_i \supseteq Z$ λ_i $\overline{}$ T : $Z{\subseteq}T{\subseteq}Y{\cap}E_i$ $(-1)^{|T\setminus Z|}$ = $\sum^{\prime i=1}$ λ_i

since for $A \subseteq B$ with $n = |B \setminus A|$

 $i: E_i \cap Y = Z$

$$
\sum_{T:\ A \subseteq T \subseteq B} (-1)^{|T \setminus A|} = \sum_{k=0}^{n} {n \choose k} (-1)^k = \begin{cases} 1, & n = 0 \\ 0, & n \ge 1 \end{cases}
$$

Therefore there must be a member E_i of $\mathcal F$ such that $E_i \cap Y = Z.$

.

Function spaces

 $\mathbb F$ arbitrary field, $\Omega \subseteq \mathbb F^n$

 $\mathbb{F}^\Omega:=\{f\,\mid\, f:\Omega\to\mathbb{F}\}\! \colon$ vector space over $\mathbb F$

Lemma 1 For $i = 1, ..., m$ let $f_i \in \mathbb{F}^{\Omega}$ and $v_i \in \Omega$ such that

- $f_i(v_i) \neq 0$ for all i
- $f_i(v_j) = 0$ for all $j < i$.

Then f_1, \ldots, f_m are linearly independent in \mathbb{F}^{Ω} .

Proof. Assume there is a linear relation

$$
\lambda_1 f_1 + \dots + \lambda_m f_m = 0 \tag{5}
$$

with not all $\lambda_i = 0$. Take the smallest j for which $\lambda_j \neq 0$. Then (5) evaluated at v_j yields $0 = \lambda_1 f_1(v_i) + \cdots + \lambda_i f_i(v_i) + \cdots + \lambda_n f_n(v_i) = \lambda_i f_i(v_i)$ and hence $\lambda_j = 0$ because $f_j(v_j) \neq 0$, a contradiction.

9

 \Box

Sets with few intersection sizes (1)

F: family of subsets of $\{1,\ldots,n\}$, $L \subseteq \{0,\ldots,n\}$

F is L-intersecting if $|A \cap B| \in L$ for all distinct members A , B of \mathcal{F} .

Theorem 3 (Frankl and Wilson 1981) If F is L-intersecting, then $|\mathcal{F}| \leq \sum_{i=0}^{|L|}$ n i \mathbf{v} .

Proof.

$$
\mathcal{F} = \{A_1, \ldots, A_m\}, |A_1| \le |A_2| \le \cdots \le |A_m|
$$

$$
v_1, \ldots, v_m \in \{0, 1\}^n
$$
 incidence vectors of A_1, \ldots, A_m

Define for $\Omega = \{0, 1\}^n$ in \mathbb{R}^{Ω} for $i = 1, ..., m$ the polynomial functions

$$
f_i(x) = \prod_{l \in L: \, l < |A_i|} (\langle v_i, x \rangle - l) \, , x \in \Omega.
$$

Note that

- $f_i(v_i) \neq 0$ for all i (since $\langle v_i, v_i \rangle = |A_i|$)
- $f_i(v_j) = 0$ for all $j < i \, (\langle v_i, v_j \rangle = |A_i \cap A_j|)$ $\sum_{j=1}^{\lfloor A_1+A_2\rfloor}$ ∈L $<$ $|A_i|$)

Hence, by lemma 1, f_1, \ldots, f_m are linearly independent in \mathbb{R}^{Ω} .

Each f_i is in the span of pure monomials $x_{i_1}x_{i_2}\ldots x_{i_s}$ with i_1 $<$ i_2 $<$ \cdots $<$ i_s and degree s \leq $|L|$ because $y^2 = y$ for $y \in \{0, 1\}.$

Since the dimension of this span is at most $\sum_{s=0}^{|L|}$ (\overline{n} s ¢ , the theorem follows. \Box

Theorem 4 (Deza, Frankl and Singhi 1983) Let p be a prime number and L and $\mathcal F$ as above. If

- $|A_i| \notin L \pmod{p}$ for all i
- $|A_i \cap A_j| \in L \pmod{p}$ for all $i \neq j$

then $|\mathcal{F}| \leq \sum_{i=0}^{|L|}$ (\overline{n} i ¢ .

Proof.

 $v_1,\ldots,v_m\in\{0,\ 1\}^n$ incidence vectors of A_1,\ldots,A_m

Define for $\Omega = \{0, 1\}^n$ in $(\mathbb{F}_p)^{\Omega}$ for $i = 1, ..., m$ the polynomial functions

$$
f_i(x) = \prod_{l \in L} (\langle v_i, x \rangle - l) , x \in \Omega.
$$

Note that

- $f_i(v_i) \neq 0$ for all i (since $\langle v_i, v_i \rangle = |A_i|$)
- $f_i(v_j) = 0$ for all $j \neq i$ (since $\langle v_i, v_j \rangle = |A_i \cap A_j|$)

Hence, by lemma 1, f_1, \ldots, f_m are linearly independent in $(\mathbb{F}_p)^{\Omega}$.

The theorem follows as in the previous proof. \Box

Constructive Ramsey graphs

A clique is a set of pairwise adjacent vertices in a graph.

An independent set is a set of pairwise non-adjacent vertices in a graph.

A graph is a **Ramsey graph** with respect to t if it has no clique and no independent set of size t .

Erdős (1947): Proved the existence of Ramsey graphs of order $n = |2^{t/2}|$ using the probabilistic method.

Aim: explicitely construct Ramsey graphs with respect to a fixed t of large order

Order $n = (t-1)^2$: disjoint union of $t-1$ cliques of size $t - 1$ each (Turán)

Ramsey graph of order $n = \Omega(t^3)$

Construction by Zsigmond Nagy (1972)

vertex set: all subsets of $\{1, \ldots, t-1\}$ of size 3 edge set $E: \{A, B\} \in E \Leftrightarrow |A \cap B| = 1$

Verification. Let A_1, \ldots, A_m be a clique. We have $|A_i \cap A_j| = 1$ for every $i \neq j$. Hence, $m \leq t-1$ by Fisher's inequality.

Let A_1, \ldots, A_m be an independent set with incidence vectors $v_1,\ldots,v_m\in(\mathbb{F}_2)^{t-1}.$ We have $|A_i\cap A_j|\in\{0,2\}$ for all $i \neq j$. Therefore we get in \mathbb{F}_2

$$
\langle v_i, v_j \rangle = |A_i \cap A_j| = \left\{ \begin{array}{ll} 0, & i \neq j \\ 1, & i = j \end{array} \right.
$$

Assume there is a linear relation

$$
\lambda_1v_1+\cdots+\lambda_mv_m=0
$$

over \mathbb{F}_2 . Then we get for every i

 $\lambda_i = \langle \lambda_1 v_1 + \cdots + \lambda_m v_m, v_i \rangle = \langle 0, v_i \rangle = 0.$

Therefore v_1, \ldots, v_m are linearly independent in $(\mathbb{F}_2)^{t-1}$ and hence $m \leq t-1$.

Ramsey graph of order $t^{\Omega(\ln t/\ln \ln t)}$

Construction by Frankl (1977)

Define for a prime number p the graph G_p by

Vertex set: all subsets of $\{1,\ldots,p^3\}$ of size p^2-1 Edge set E: $\{A, B\} \in E \Leftrightarrow |A \cap B| \neq -1$ (mod p)

Theorem 5 The graph G_p is a Ramsey graph with respect to $\sum_{i=0}^{p-1}$ (p^3 $\binom{p}{i} + 1.$

Remark. The theorem yields for a fixed t a Ramsey graph of order $t^{\Omega(\ln t/\ln \ln t)}$.

Proof. Let A_1, \ldots, A_m be an independent set. We have

$$
|A_i \cap A_j| \in \{p-1, 2p-1, \ldots, p^2-p-1\}
$$

for every $i \neq j$. By Theorem 3,

$$
m\leq \sum_{i=0}^{p-1} {p^3 \choose i}.
$$

15

A clique of size m consists of sets A_1, \ldots, A_m with

- $|A_i \cap A_j| \neq -1$ (mod p) for every $i \neq j$
- $|A_i| \equiv -1 \pmod{p}$ for all *i*.

Applying Theorem 4 with $L = \{0, \ldots, p - 2\}$, we conclude

$$
m\leq \sum_{i=0}^{p-1} {p^3 \choose i}.
$$

Verification of the remark. By the theorem, G_p for $p = \max\{q \text{ prime: } \sum_{i=0}^{q-1} \binom{q}{i}$ q^3 i $\ddot{\cdot}$ $\langle t \rangle$ is a Ramsey graph with respect to t for any \widetilde{t} .

It is of order

$$
n = {p^3 \choose p^2 - 1} \ge \left(\frac{p^3}{p^2 - 1}\right)^{p^2 - 1} = p^{\Omega(p^2)}.
$$

 \Box

Furthermore, we have, since there is a prime between N and 2 N for any integer N

$$
t \leq \sum_{i=0}^{2p-1} \binom{(2p)^3}{i} \leq 2p \binom{(2p)^3}{2p-1} \leq (2p)^{6p-2} = p^{O(p)}.
$$

This yields

$$
p = \Omega(\ln t / \ln \ln t)
$$

since for sufficiently large t

$$
\left(\frac{\ln t}{\ln \ln t}\right)^{\frac{\ln t}{\ln \ln t}} < t
$$

and we get

$$
n = p^{\Omega(p^2)} = t^{\Omega(p)} = t^{\Omega(\ln t/\ln \ln t)}.
$$

The flipping cards game

 $u = (u_1, \ldots, u_n), \ v = (v_1, \ldots, v_n) \in \{0,1\}^n$

Probe: 0-1 vector of length n containing exactly one bit of each pair u_i, v_i , e.g. $(v_1, u_2, u_3, \ldots, u_n)$

Goal: Decide whether $u = v$ with probes and using as little non-reusable memory as possible

Theorem 6 (J. Edmonds, R. Impagliazzo) For n $\,=\,$ $\,r^2$ it is possible to test the equality of u,v using only $r + 1$ probes and writing down only r bits in the memory.

Proof.

$$
u = (u_1, \ldots, u_r), \ u_i \in \{0, 1\}^r
$$

$$
v = (v_1, \ldots, v_r), \ v_i \in \{0, 1\}^r
$$

Consider the following protocol:

Probe 0: (u_1, \ldots, u_r) \rightsquigarrow write down $w_0 := u_1 + \cdots + u_r$ mod 2 in the memory For $1 \leq i \leq r$: Probe *i*: $(u_1, \ldots, u_{i-1}, v_i, u_{i+1}, \ldots, u_r)$ $\sim w_i := u_1 + \cdots + u_{i-1} + v_i + u_{i+1} + \cdots + u_r \mod 2$ Stop and report $u \neq v$ if $w_0 \neq w_i$

Answer $u = v$ at the end if not $u \neq v$ reported

This protocol reports $u \neq v \Leftrightarrow u_i \neq v_i$ for some $1 \leq i \leq r \Leftrightarrow u \neq v$

Theorem 7 (Pudlák, Sgall 1997) It is possible to test the equality of u, v using only $O(log n)$ probes and writing down only $O((\log n)^2)$ bits in the memory.

Proof. Note that

$$
u = v \Leftrightarrow 0 = \langle u - v, u - v \rangle = \langle u, u \rangle + \langle v, v \rangle - 2\langle u, v \rangle
$$

=
$$
\sum_{i=1}^{n} u_i^2 + \sum_{i=1}^{n} v_i^2 - 2\left(\sum_{i=1}^{n} u_i \sum_{i=1}^{n} v_i - \sum_{i \neq j} u_i v_j\right)
$$

$$
\begin{aligned}\n\text{Probe 1: } (u_1, \ldots, u_n) \\
&\leftrightarrow \sum_{i=1}^n u_i^2, \sum_{i=1}^n u_i \\
\text{Probe 2: } (v_1, \ldots, v_n) \\
&\leftrightarrow \sum_{i=1}^n v_i^2, \sum_{i=1}^n v_i \\
\text{Probe 3: } (u_1, \ldots, u_{\lfloor \frac{n}{2} \rfloor}, v_{\lfloor \frac{n}{2} \rfloor+1}, \ldots, v_n) \\
&\leftrightarrow \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \sum_{j=\lfloor \frac{n}{2} \rfloor+1}^n u_i v_j\n\end{aligned}
$$

Probe 4:
$$
(v_1, \ldots, v_{\lfloor \frac{n}{2} \rfloor}, u_{\lfloor \frac{n}{2} \rfloor + 1}, \ldots, u_n)
$$

 $\leadsto \sum_{i=\lfloor \frac{n}{2} \rfloor + 1}^n \sum_{j=1}^{\lfloor \frac{n}{2} \rfloor} u_i v_j$

Probe 5: $(u_1,\ldots,u_{|\frac{n}{4}})$ $_{\frac{n}{4}\rfloor},v_{\lfloor\frac{n}{4}\rfloor}$ $\frac{n}{4}\rfloor + 1, \ldots, v_{\lfloor \frac{n}{2} \rfloor}$ $_{\frac{n}{2}]} , u_{\lfloor \frac{n}{2} }$ $\frac{n}{2}\rfloor+1,\ldots, u_{\lfloor \frac{3n}{4}\rfloor}$ $\frac{3n}{4}$ | \cdot $v_{\lvert \frac{3n}{4}}$ $_{\frac{3n}{4}\rfloor+1},\ldots,v_n)$ \rightsquigarrow $\frac{n}{4}$ $\frac{n}{4}$ $i=1$ $\frac{n}{2}$ $\frac{n}{2}$ $j=\lfloor \frac{n}{4} \rfloor$ $\frac{n}{4}$]+1 u_iv_j + $\frac{3n}{4}$ $\frac{3n}{4}$ $i=|\frac{n}{2}$ $\frac{n}{2}$] $+1$ \sum_{n} $j=|\frac{3n}{4}$ $\frac{3n}{4}$] +1 u_iv_j

Continue like that until you have considered all products $u_i v_j$ for $i \neq j$ and finally sum all values stored in the memory up to get $\langle u - v, u - v \rangle$.

This protocol needs $2\lceil \log n \rceil + 2$ probes and for each memorized number $2\lceil \log(n+1) \rceil$ bits of memory (since all these numbers lie between 0 and n^2).