Schedule of the talk

- Linear Algebra: Reminder
- Fisher's inequality
- Vapnik-Chervonenkis dimension
- Sets with few intersection sizes
- Constructive Ramsey graphs
- The flipping cards game

Linear Algebra: Reminder (1)

Let V be a vector space over a field \mathbb{F} , $v_1, \ldots, v_n \in V$.

The vectors v_1, \ldots, v_n are **linearly independent** if there is no linear relation

 $\lambda_1 v_1 + \dots + \lambda_n v_n = 0$

with $\lambda_i \neq 0$ for at least one *i*.

The set

span{ v_1, \ldots, v_n } = { $\lambda_1 v_1 + \cdots + \lambda_n v_n : \lambda_1, \ldots, \lambda_n \in \mathbb{F}$ } is called the **span** of v_1, \ldots, v_n and a subspace of V.

A **basis** of V is a set of linearly independent vectors whose span is V. The cardinality of each basis equals the **dimension** of V.

Proposition 1 (linear algebra bound) If v_1, \ldots, v_k are linearly independent vectors in V, then $k \leq \dim V$.

Examples:

 \mathbb{F}^n is a vector space over \mathbb{F} of dimension n with basis e_1, \ldots, e_n , where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$.

The subspace span $\{v_1, \ldots, v_n\} \subseteq V$ has dimension at most n and its dimension is exactly n iff v_1, \ldots, v_n are linearly independent.

Linear Algebra: Reminder (2)

In the vector space $V = \mathbb{R}^n$ we use the Euclidean standard scalar product defined by

$$\langle u, v \rangle = u_1 v_1 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

for two vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$.

Properties:

•
$$\langle u, v \rangle = \langle v, u \rangle$$

•
$$\langle \lambda u + \mu v, w \rangle = \lambda \langle u, w \rangle + \mu \langle v, w \rangle$$

• $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0 \Leftrightarrow v = 0$.

for all $u, v, w \in \mathbb{R}^n$ and $\lambda, \mu \in \mathbb{R}$

Example:

 $A_1, A_2 \subseteq \{1, \dots, n\} \rightsquigarrow v_1, v_2 \in \{0, 1\}^n \subseteq \mathbb{R}^n$ (incidence vectors):

$$v_i = (v_{i1}, \dots, v_{in})$$
 where $v_{ij} = \begin{cases} 1 , j \in A_i \\ 0 , j \notin A_i \end{cases}$, $i = 1, 2$

$$\begin{array}{rcl} \langle v_1, v_2 \rangle & = & |A_1 \cap A_2| \\ \langle v_i, v_i \rangle & = & |A_i|, \ i = 1, 2 \end{array}$$

Fisher's inequality

Theorem 1 (Majumdar 1953) Let A_1, \ldots, A_m be distinct subsets of $\{1, \ldots, n\}$ such that $|A_i \cap A_j| = k$ for some fixed $1 \le k \le n$ for every $i \ne j$. Then $m \le n$.

Proof. (Babai and Frankl 1992) $v_i \in \mathbb{R}^n$, $1 \le i \le m$: incidence vectors of A_i Goal: v_1, \ldots, v_m are linearly independent in \mathbb{R}^n . Assume $\sum_{i=1}^m \lambda_i v_i = 0$ for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$.

Using

$$\langle v_i, v_j \rangle = |A_i \cap A_j| = \begin{cases} |A_i| &, i = j \\ k &, i \neq j \end{cases}$$

we conclude

$$0 = \left\langle \sum_{i} \lambda_{i} v_{i}, \sum_{j} \lambda_{j} v_{j} \right\rangle = \sum_{i} \lambda_{i}^{2} |A_{i}| + \sum_{i \neq j} \lambda_{i} \lambda_{j} k$$
$$= \sum_{i} \lambda_{i}^{2} (|A_{i}| - k) + k \left(\sum_{i} \lambda_{i}^{2} + \sum_{i \neq j} \lambda_{i} \lambda_{j} \right)$$
$$= \sum_{i} \lambda_{i}^{2} (|A_{i}| - k) + \left(\sum_{i} \lambda_{i} \right)^{2}.$$

Since $|A_i| \ge k$ for all i we must have

$$\begin{array}{rcl} \lambda_1 + \dots + \lambda_m &=& 0 & (1) \\ \lambda_i^2(|A_i| - k) &=& 0 \text{ for } i = 1, \dots, m & (2) \end{array}$$

Assume there is an *i* with $\lambda_i \neq 0$.

$$\stackrel{(2)}{\Rightarrow} |A_i| = k \Rightarrow |A_j| > k \text{ for all } j \neq i \stackrel{(2)}{\Rightarrow} \lambda_j = 0 \text{ for all } j \neq i$$

We end up with $\lambda_1 + \cdots + \lambda_m = \lambda_i \neq 0$, a contradiction to (1). Consequently,

$$\lambda_1=\cdots=\lambda_m=0.$$

Vapnik-Chervonenkis dimension

 \mathcal{F} : family of subsets of an n-element set X

 $Y \subseteq X$ is shattered by \mathcal{F} if $\{E \cap Y : E \in \mathcal{F}\} = \mathcal{P}(Y)$

 \mathcal{F} is (n, k)-dense if there is a $Y \subseteq X$ with |Y| = k such that Y is shattered by \mathcal{F} .

Remark: $\mathcal{F}(n, k)$ -dense $\Rightarrow \mathcal{F}(n, l)$ -dense for all l < k

The **Vapnik-Chervonenkis dimension** of \mathcal{F} is the largest k for which \mathcal{F} is (n, k)-dense.

Theorem 2 If $|\mathcal{F}| > \sum_{i=0}^{k-1} {n \choose i}$ then the Vapnik-Chervonenkis dimension of \mathcal{F} is at least k.

Proof. (Frankl and Pach 1983)

 $\mathcal{F} = \{E_1, \dots, E_s\}$ S_1, \dots, S_r : All subsets of X of size at most k - 1

Define the $s \times r$ matrix $M = (m_{ij})$ by

$$m_{ij} = \left\{ \begin{array}{ccc} 1 & , & E_i \supseteq S_j \\ 0 & , & \text{otherwise} \end{array} \right.$$

Since s > r, the rows $m_i = (m_{i1}, \ldots, m_{ir}), \ 1 \le i \le s$ cannot be linearly independent as elements of \mathbb{R}^r , i.e. there are $\lambda_1, \ldots, \lambda_s$ not all zero such that

$$\sum_{i=1}^{s} \lambda_i m_i = 0. \tag{3}$$

Set for $T \subseteq X$

$$g(T) := \sum_{i: E_i \supseteq T} \lambda_i.$$

For $j = 1, \ldots, r$ we have

$$g(S_j) = \sum_{i: E_i \supseteq S_j} \lambda_i = \sum_{i=1}^s \lambda_i m_{ij} \stackrel{(3)}{=} 0 \tag{4}$$

There is a $T \subseteq X$ with $g(T) \neq 0$.

Choose a subset $Y \subseteq X$ of minimum cardinality such that $g(Y) \neq 0$. By (4), $|Y| \ge k$.

Goal: Y is shattered by \mathcal{F} .

Let $Z \subseteq Y$. Because of the minimality of Y we get $0 \neq (-1)^{|Y \setminus Z|} g(Y)$ $= \sum_{T: Z \subseteq T \subseteq Y} (-1)^{|T \setminus Z|} g(T)$ $= \sum_{T: Z \subseteq T \subseteq Y} (-1)^{|T \setminus Z|} \sum_{i: E_i \supseteq T} \lambda_i$ $= \sum_{i: E_i \supseteq Z} \lambda_i \sum_{T: Z \subseteq T \subseteq Y \cap E_i} (-1)^{|T \setminus Z|}$ $= \sum_{i: E_i \cap Y = Z} \lambda_i$

since for $A \subseteq B$ with $n = |B \setminus A|$

$$\sum_{T:A\subseteq T\subseteq B} (-1)^{|T\setminus A|} = \sum_{k=0}^n \binom{n}{k} (-1)^k = \begin{cases} 1 & , n=0\\ 0 & , n\geq 1 \end{cases}$$

Therefore there must be a member E_i of \mathcal{F} such that $E_i \cap Y = Z$.

8

Function spaces

 \mathbb{F} arbitrary field, $\Omega \subseteq \mathbb{F}^n$

 $\mathbb{F}^{\Omega} := \{ f \mid f : \Omega \to \mathbb{F} \}: \text{ vector space over } \mathbb{F}$

Lemma 1 For i = 1, ..., m let $f_i \in \mathbb{F}^{\Omega}$ and $v_i \in \Omega$ such that

- $f_i(v_i) \neq 0$ for all i
- $f_i(v_j) = 0$ for all j < i.

Then f_1, \ldots, f_m are linearly independent in \mathbb{F}^{Ω} .

Proof. Assume there is a linear relation

$$\lambda_1 f_1 + \dots + \lambda_m f_m = 0 \tag{5}$$

with not all $\lambda_i = 0$. Take the smallest j for which $\lambda_j \neq 0$. Then (5) evaluated at v_j yields $0 = \lambda_1 f_1(v_j) + \cdots + \lambda_j f_j(v_j) + \cdots + \lambda_n f_n(v_j) = \lambda_j f_j(v_j)$ and hence $\lambda_j = 0$ because $f_j(v_j) \neq 0$, a contradiction.

Sets with few intersection sizes (1)

 \mathcal{F} : family of subsets of $\{1, \ldots, n\}$, $L \subseteq \{0, \ldots, n\}$

 \mathcal{F} is *L*-intersecting if $|A \cap B| \in L$ for all distinct members *A*, *B* of \mathcal{F} .

Theorem 3 (Frankl and Wilson 1981) If \mathcal{F} is *L*-intersecting, then $|\mathcal{F}| \leq \sum_{i=0}^{|L|} {n \choose i}$.

Proof.

$$\mathcal{F} = \{A_1, \dots, A_m\}, |A_1| \le |A_2| \le \dots \le |A_m|$$

$$v_1, \dots, v_m \in \{0, 1\}^n \text{ incidence vectors of } A_1, \dots, A_m$$

Define for $\Omega = \{0, 1\}^n$ in \mathbb{R}^{Ω} for $i = 1, \ldots, m$ the polynomial functions

$$f_i(x) = \prod_{l \in L: \ l < |A_i|} (\langle v_i, x \rangle - l) \ , x \in \Omega.$$

Note that

•
$$f_i(v_i) \neq 0$$
 for all i (since $\langle v_i, v_i \rangle = |A_i|$)

• $f_i(v_j) = 0$ for all j < i $(\langle v_i, v_j \rangle = \underbrace{|A_i \cap A_j|}_{\in L} < |A_i|)$

Hence, by lemma 1, f_1, \ldots, f_m are linearly independent in \mathbb{R}^{Ω} .

Each f_i is in the span of pure monomials $x_{i_1}x_{i_2}\ldots x_{i_s}$ with $i_1 < i_2 < \cdots < i_s$ and degree $s \leq |L|$ because $y^2 = y$ for $y \in \{0, 1\}$.

Since the dimension of this span is at most $\sum_{s=0}^{|L|} \binom{n}{s}$, the theorem follows.

Theorem 4 (Deza, Frankl and Singhi 1983) Let p be a prime number and L and \mathcal{F} as above. If

- $|A_i| \not\in L \pmod{p}$ for all i
- $|A_i \cap A_j| \in L \pmod{p}$ for all $i \neq j$

then $|\mathcal{F}| \leq \sum_{i=0}^{|L|} \binom{n}{i}$.

Proof.

 $v_1, \ldots, v_m \in \{0, 1\}^n$ incidence vectors of A_1, \ldots, A_m

Define for $\Omega = \{0, 1\}^n$ in $(\mathbb{F}_p)^{\Omega}$ for $i = 1, \ldots, m$ the polynomial functions

$$f_i(x) = \prod_{l \in L} (\langle v_i, x \rangle - l) , x \in \Omega.$$

Note that

- $f_i(v_i) \neq 0$ for all i (since $\langle v_i, v_i \rangle = |A_i|$)
- $f_i(v_j) = 0$ for all $j \neq i$ (since $\langle v_i, v_j \rangle = |A_i \cap A_j|$)

Hence, by lemma 1, f_1, \ldots, f_m are linearly independent in $(\mathbb{F}_p)^{\Omega}$.

The theorem follows as in the previous proof. $\hfill \Box$

Constructive Ramsey graphs

A clique is a set of pairwise adjacent vertices in a graph.

An **independent set** is a set of pairwise non-adjacent vertices in a graph.

A graph is a **Ramsey graph** with respect to t if it has no clique and no independent set of size t.

Erdős (1947): Proved the existence of Ramsey graphs of order $n = \lfloor 2^{t/2} \rfloor$ using the probabilistic method.

Aim: **explicitely** construct Ramsey graphs with respect to a fixed t of large order

Order $n = (t - 1)^2$: disjoint union of t - 1 cliques of size t - 1 each (Turán)

Ramsey graph of order $n = \Omega(t^3)$

Construction by Zsigmond Nagy (1972)

vertex set: all subsets of $\{1, \ldots, t-1\}$ of size 3 edge set E: $\{A, B\} \in E \Leftrightarrow |A \cap B| = 1$

Verification. Let A_1, \ldots, A_m be a clique. We have $|A_i \cap A_j| = 1$ for every $i \neq j$. Hence, $m \leq t - 1$ by Fisher's inequality.

Let A_1, \ldots, A_m be an independent set with incidence vectors $v_1, \ldots, v_m \in (\mathbb{F}_2)^{t-1}$. We have $|A_i \cap A_j| \in \{0, 2\}$ for all $i \neq j$. Therefore we get in \mathbb{F}_2

$$\langle v_i, v_j \rangle = |A_i \cap A_j| = \begin{cases} 0 & , i \neq j \\ 1 & , i = j \end{cases}$$

Assume there is a linear relation

$$\lambda_1 v_1 + \dots + \lambda_m v_m = 0$$

over \mathbb{F}_2 . Then we get for every *i*

$$\lambda_i = \langle \lambda_1 v_1 + \dots + \lambda_m v_m, v_i \rangle = \langle 0, v_i \rangle = 0.$$

Therefore v_1, \ldots, v_m are linearly independent in $(\mathbb{F}_2)^{t-1}$ and hence $m \leq t-1$.

Ramsey graph of order $t^{\Omega(\ln t / \ln \ln t)}$

Construction by Frankl (1977)

Define for a prime number p the graph G_p by

Vertex set: all subsets of $\{1, \ldots, p^3\}$ of size $p^2 - 1$ Edge set E: $\{A, B\} \in E \Leftrightarrow |A \cap B| \not\equiv -1 \pmod{p}$

Theorem 5 The graph G_p is a Ramsey graph with respect to $\sum_{i=0}^{p-1} {p^3 \choose i} + 1$.

Remark. The theorem yields for a fixed t a Ramsey graph of order $t^{\Omega(\ln t / \ln \ln t)}$.

Proof. Let A_1, \ldots, A_m be an independent set. We have

$$|A_i \cap A_j| \in \{p-1, 2p-1, \dots, p^2 - p - 1\}$$

for every $i \neq j$. By Theorem 3,

$$m \le \sum_{i=0}^{p-1} \binom{p^3}{i}.$$

A clique of size m consists of sets A_1,\ldots,A_m with

- $|A_i \cap A_j| \not\equiv -1 \pmod{p}$ for every $i \neq j$
- $|A_i| \equiv -1 \pmod{p}$ for all *i*.

Applying Theorem 4 with $L = \{0, \ldots, p-2\}$, we conclude

$$m \le \sum_{i=0}^{p-1} \binom{p^3}{i}.$$

Verification of the remark. By the theorem, G_p for $p = \max\{q \text{ prime: } \sum_{i=0}^{q-1} {q^3 \choose i} < t\}$ is a Ramsey graph with respect to t for any t.

It is of order

$$n = {\binom{p^3}{p^2 - 1}} \ge {\left(\frac{p^3}{p^2 - 1}\right)^{p^2 - 1}} = p^{\Omega(p^2)}.$$

Furthermore, we have, since there is a prime between N and 2N for any integer N

$$t \leq \sum_{i=0}^{2p-1} \binom{(2p)^3}{i} \leq 2p\binom{(2p)^3}{2p-1} \leq (2p)^{6p-2} = p^{O(p)}.$$

This yields

$$p = \Omega(\ln t / \ln \ln t)$$

since for sufficiently large \boldsymbol{t}

$$\left(\frac{\ln t}{\ln\ln t}\right)^{\frac{\ln t}{\ln\ln t}} < t$$

and we get

$$n = p^{\Omega(p^2)} = t^{\Omega(p)} = t^{\Omega(\ln t / \ln \ln t)}.$$

The flipping cards game

 $u = (u_1, \ldots, u_n), v = (v_1, \ldots, v_n) \in \{0, 1\}^n$

Probe: 0-1 vector of length n containing exactly one bit of each pair u_i, v_i , e.g. $(v_1, u_2, u_3, \ldots, u_n)$

Goal: Decide whether u = v with probes and using as little non-reusable memory as possible

Theorem 6 (J. Edmonds, R. Impagliazzo) For $n = r^2$ it is possible to test the equality of u, v using only r + 1 probes and writing down only r bits in the memory.

Proof.

$$u = (u_1, \dots, u_r), \ u_i \in \{0, 1\}^r$$

 $v = (v_1, \dots, v_r), \ v_i \in \{0, 1\}^r$

Consider the following protocol:

Probe 0: (u_1, \ldots, u_r) \rightsquigarrow write down $w_0 := u_1 + \cdots + u_r \mod 2$ in the memory For $1 \le i \le r$: Probe *i*: $(u_1, \ldots, u_{i-1}, v_i, u_{i+1}, \ldots, u_r)$ $\rightsquigarrow w_i := u_1 + \cdots + u_{i-1} + v_i + u_{i+1} + \cdots + u_r \mod 2$ Stop and report $u \ne v$ if $w_0 \ne w_i$

Answer u = v at the end if not $u \neq v$ reported

This protocol reports $u \neq v \Leftrightarrow u_i \neq v_i$ for some $1 \leq i \leq r \Leftrightarrow u \neq v$

Theorem 7 (Pudlák, Sgall 1997) It is possible to test the equality of u, v using only $O(\log n)$ probes and writing down only $O((\log n)^2)$ bits in the memory.

Proof. Note that

$$u = v \Leftrightarrow 0 = \langle u - v, u - v \rangle = \langle u, u \rangle + \langle v, v \rangle - 2 \langle u, v \rangle$$
$$= \sum_{i=1}^{n} u_i^2 + \sum_{i=1}^{n} v_i^2 - 2 \left(\sum_{i=1}^{n} u_i \sum_{i=1}^{n} v_i - \sum_{i \neq j} u_i v_j \right)$$

Probe 1:
$$(u_1, \ldots, u_n)$$

 $\rightsquigarrow \sum_{i=1}^n u_i^2$, $\sum_{i=1}^n u_i$
Probe 2: (v_1, \ldots, v_n)
 $\rightsquigarrow \sum_{i=1}^n v_i^2$, $\sum_{i=1}^n v_i$
Probe 3: $(u_1, \ldots, u_{\lfloor \frac{n}{2} \rfloor}, v_{\lfloor \frac{n}{2} \rfloor + 1}, \ldots, v_n)$
 $\rightsquigarrow \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \sum_{j=\lfloor \frac{n}{2} \rfloor + 1}^n u_i v_j$

Probe 4:
$$(v_1, \ldots, v_{\lfloor \frac{n}{2} \rfloor}, u_{\lfloor \frac{n}{2} \rfloor+1}, \ldots, u_n)$$

 $\rightsquigarrow \sum_{i=\lfloor \frac{n}{2} \rfloor+1}^{n} \sum_{j=1}^{\lfloor \frac{n}{2} \rfloor} u_i v_j$

Probe 5: $(u_1, \ldots, u_{\lfloor \frac{n}{4} \rfloor}, v_{\lfloor \frac{n}{4} \rfloor+1}, \ldots, v_{\lfloor \frac{n}{2} \rfloor}, u_{\lfloor \frac{n}{2} \rfloor+1}, \ldots, u_{\lfloor \frac{3n}{4} \rfloor}, v_{\lfloor \frac{3n}{4} \rfloor+1}, \ldots, v_n)$ $\sim \sum_{i=1}^{\lfloor \frac{n}{4} \rfloor} \sum_{j=\lfloor \frac{n}{4} \rfloor+1}^{\lfloor \frac{n}{2} \rfloor} u_i v_j + \sum_{i=\lfloor \frac{n}{2} \rfloor+1}^{\lfloor \frac{3n}{4} \rfloor} \sum_{j=\lfloor \frac{3n}{4} \rfloor+1}^{n} u_i v_j$

Continue like that until you have considered all products $u_i v_j$ for $i \neq j$ and finally sum all values stored in the memory up to get $\langle u - v, u - v \rangle$.

This protocol needs $2\lceil \log n \rceil + 2$ probes and for each memorized number $2\lceil \log(n+1) \rceil$ bits of memory (since all these numbers lie between 0 and n^2).