.
.11 Density and Jensen

14.6.2004 Martin Jaggi

Book: Stasys Jukna - Extremal Combinatorics

Definitions

Dense sets Size of dense sets

Universal sets Isolated neightbor condition for graphs Equivalence with universal sets Construction of very small universal sets using Paley graphs

Full graphs

Definitions

Projections

The **projection** of a vector $v = (v_1,...,v_n)$ onto a set of coordinates $S = \{i_1,...,i_k\}$ is the vector $\mathbf{v}\big|_{\mathbf{S}}:=(\mathsf{v}_{\mathsf{i}_1, \mathsf{...}, \mathsf{v}_{\mathsf{i}_k}})$) .

The projection of a set of vectors $A \subset \{0,1\}^n$ is the set $A|_{s} := \{v|_{s} \ v \in A\}$.

Dense and Universal Sets

A vector set $A \subseteq \{0,1\}^n$ is called (n,k) -universal if the projection of A onto any subset S of k coordinates contains all possible 2^k $confiqurations.$

$$
\forall S \quad |S| = k \quad A|_{S} = \{0,1\}^{K}
$$

A is called **(n,k)-dense** if the same holds not for all but for at least one subset S of k indices.

$$
\exists S \quad |S| = k \quad A|_S = \{0,1\}^k
$$

and (2,1)-universal

but not (2,1)-universal

A is (3,1)-dense and (3,1)-universal A is (3,2)-dense but not (3,2)-universal

Dense sets

What can one say about the size of dense sets ?

 $\bigotimes |A| \ge 2 \implies A(n,1)$ -dense

 $\bigotimes A$ (n,k)-dense $\implies |A| \ge 2^k$

There are $\sum_{i=0}^{k-1} {n \choose i}$ vectors in ${0,1}^n$ which have less than k ones. These are obviously not (n,k)-dense.

Theorem 1: (Perles and Shelah 1972 / Sauer 1972 / Vapnik and Chervonenkis 1971)

$A \subseteq \{0,1\}^n$ and $|A| > H(n,k) \implies A(n,k)$ -dense

Proof Induction on n:

Base cases:

 $|A|$ > H(n,1) = 1 means A contains at least two different vectors and hence is (n,1)-dense. $|A| > H(n,n) = 2^{n}-1$ means A is the entire ncube and hence is (n,n)-dense.

 $n-1 \rightarrow n$:

Let **B** be the projection of A onto the first n-1 coordinates, and **C** the set of all vectors u in $\{0,1\}^{n-1}$ for which both vectors (u,0) and (u,1) belong to A.

 $|A| = |B| + |C|$

 \bigcirc If $|B| > H(n-1,k)$ then B is $(n-1,k)$ -dense by induction hypothesis, and hence the whole set A is also (n,k)-dense.

If $|B| \leq H(n-1,k)$ then \bigcirc $|C| = |A| - |B| > H(n,k) - H(n-1,k)$ $=\sum_{i=0}^{k-1} {n \choose i} - \sum_{i=0}^{k-1} {n-1 \choose i}$ $\binom{n}{i} = \binom{n-1}{i-1} + \binom{n-1}{i}$ $= \sum_{i=1}^{k-1} {n-1 \choose i-1}$ $= \sum {n-1 \choose i}$ = H(n-1,k-1)

So C is (n-1,k-1)-dense by induction hypothesis. Because $C \times \{0,1\}$ lies in A, the whole set A is also (n,k)-dense.

Universal sets

Isolated neighbor condition

Property of (bipartite) graphs which is equivalent to the universality property of 0-1 vectors.

A vector set $A \subset \{0,1\}^n$ is called (n,k) -universal if the projection of A onto any subset of k coordinates S contains all possible 2k configurations. $A|_{s} = \{0,1\}^{k} \quad \forall S \quad |S| = k$

Bipartite graphs

Given a bipartite graph with parts of size n: $G = (V_1, V_2, E)$ with $|V_1| = |V_2| = n$ we say:

A node $x \in V_2$ is a **common neighbor** for a set of nodes $A \subseteq V_1$ if x is jointed to each node of A.

A node $x \in V_2$ is a **common non-neighbor** for a set of nodes $B \subseteq V_1$ if x is jointed to no node of B.

$v(A,B) := #$ nodes in V_2 that are $A, B \subseteq V_1$ common neighbors of A and common non-neighbors of B at the same time.

 $\overline{v(A,B)} = 2$

(Gál 1998)

A bipartite graph $G = (V_1, V_2, E)$ satisfies the **isolated neighbor condition for k** if for any two disjoint subsets A, $B \subseteq V_1$ such that $|A| + |B| = k$. $v(A,B) > 0$

Proposition 2:

Let G be a bipartite Graph with parts of size n and C be the set of columns of its adjacency matrix. then:

G satisfies the isolated neighbor condition for k \Leftrightarrow C is (n,k)-universal.

Proof | of Proposition 2:

 \implies

Let $M = (m_{x,y})$ be the adjacency matrix of G. $m_{x,y} = \begin{cases} 1 & (x,y) \in E \\ 0 & \text{otherwise} \end{cases}$

Let $S = \{i_1,...,i_k\}$ be a subset of k rows of M. Let $v = (v_{i_1},...,v_{i_k})$) be an arbitrary vector in $\{0,1\}^{\mathsf{K}}.$ nodes of V_1

Is there a column y of M with $y|_{s} = v$?

Split our S into two subsets A and B $j \in A$ iff $v_j = 1$, $j \in B$ iff $v_j = 0$ $|A| + |B| = |S| = k$

Paley graphs Construction of small universal sets

A bipartite **Paley graph** is a bipartite graph $\overline{\mathbf{G_p}}$ = (V₁,V₂,E) with parts V₁ = V₂ = $\overline{\mathbf{F_p}}$. $(x,y) \in E$ iff $x-y$ is a non-zero square in F_p .

Where p is a prime number.

Quadratic residue character:

- 1 0 $\mathcal{X}(\textbf{x}) \ \coloneqq \ \left\{ \begin{matrix} 1 & \exists \text{ a} \in \text{F}_{\text{p}}^* & \text{x} = \text{a}^{\textbf{2}} \ 0 & \text{x} = 0 \ -1 & \not \exists \text{ a} \in \text{F}_{\text{p}} & \text{x} = \text{a}^{\textbf{2}} \end{matrix} \right.$ $x = 0$ \overrightarrow{A} a \in F_p $x = a²$ * $x \in F_p$ $\chi_{(\mathsf{x})} = \mathsf{x}^{(p-1)/2}$ $\forall \mathsf{x} \in \mathsf{F}_\mathsf{p}$ $\chi_{(\mathsf{x} \cdot \mathsf{y})} = \chi_{(\mathsf{x})} \cdot \chi_{(\mathsf{y})}$ $\forall x, \mathsf{y} \in \mathrm{F}_{\mathsf{p}}$
- Theorem (Weil 1948):

Let $f(x)$ be a polynomial over F_p which is not the square of another polynomial and has precisely s distinct zeros. then:

of Theorem 3: Proof

Remember that (x,y) is an edge in $G_p \iff \chi_{(x-y)} = 1$.

We say $x' \in V_2$ is the **copy** of $x \in V_1$ if both these nodes correspond to the same element in F**p.** No x is joined to its copy x'.

We define

 $U := V_2 - (A' \cup B')$ where A', B' $\subseteq V_2$ are the copies of A, $B \subseteq V_1$

g(x) := for nodes $x \in V_2$

For each node $x \in U$, g(x) is non-zero iff x is joined to every node in A and to no node in B, in which case it is precisely 2^k . So $\sum g(x) = 2^k v^*(A, B)$

where $v^*(A,B)$ is the number of nodes in U which are joined to every node of A and to no node of B. $\left(\begin{array}{c} \end{array}\right)$

 $x \in U$

$$
g(x) = \prod_{c \in A \cup B} (1 \pm \chi(x - c))
$$

$$
c \in B
$$

$$
= 1 + \sum_{C \subset A \cup B} (-1)^{|C \cap B|} \chi(f_C(x))
$$

where $f_C(x) = \prod (x -$

 $c \in C$

$$
\left| \sum_{x \in \mathbb{F}_p} g(x) - p \right| = \left| \sum_{x \in \mathbb{F}_p} (g(x) - 1) \right| = \left| \sum_{x \in \mathbb{F}_p} \sum_{C} (-1)^{|C \cap B|} \chi(f_C(x)) \right|
$$

\n
$$
\leq \left| \sum_{C} (-1)^{|C \cap B|} \sum_{x \in \mathbb{F}_p} \chi(f_C(x)) \right| \leq \sum_{C} \left| \sum_{x \in \mathbb{F}_p} \chi(f_C(x)) \right|
$$

\n
$$
\leq \sum_{C} (|C| - 1) \sqrt{p}
$$
 (Weil's theorem)
\n
$$
= \sqrt{p} \sum_{s=1}^k {k \choose s} (s - 1) = \sqrt{p} \left(\sum_{s=1}^k {k \choose s} s - {k \choose s} \right)
$$

\n
$$
= \sqrt{p} (k 2^{k-1} - (2^k - 1))
$$

Because for every $x \in A' \cup B'$, $g(x) \le 2^{k-1}$, or we have

$$
\left| \sum_{x \in A' \cup B'} g(x) \right| \leq k 2^{k-1}
$$

$$
\sum_{x \in U} g(x) - p \Big| \le \sqrt{p} \left(k \ 2^{k-1} - 2^k + 1 \right) + k \ 2^{k-1}
$$

By dividing both sides by 2^k and using we get: **(**

$$
v^*(A,B) \; - \; 2^{-k} p \big| \; \leq \; \sqrt{p} \; \left(\frac{k}{2} - 1 + \frac{1}{2^k} \right) + \frac{k}{2}
$$

and because $|v(A, B) - v^*(A, B)| \le |A' \cup B'| = k$:

$$
|v(A,B) - 2^{-k}p| \le \frac{k\sqrt{p}}{2} + \sqrt{p} + \frac{\sqrt{p}}{2^k} + \frac{k}{2} + k
$$

for $p > 9$

 ρ'

Theorem 3 together with Proposition 2 gives us, for every prime $n > 9$ and for every k such that $k 2^k < \sqrt{n}$, an explicit construction of (n,k)-universal sets of size **n**.

Using linear codes it is possible to construct such sets of size $n^{O(k)}$ for arbitrary k.

Full graphs

A graph containing of order n is called **k-full** iff it contains every k-vertex graph as a subgraph.

How many vertices a graph must have to be k-full ?

If G is a k-full graph of order then $\binom{n}{k}$ is at least the number of non-isomorphic subgraphs of order k.

 \Leftrightarrow \Rightarrow

Construction of small k-full graphs

Let P_k be the graph of order $n = 2^k$ whose vertices are the subsets of {1,...,k} , and where two vertices are joined iff $|A \cap B|$ is even. Exception: A is joined to {} iff |A| is even.

Theorem 4: **Fig. 3: 1981** (Bollobás and Thomason 1981)

The graph **P_k** is k-full.

Proof \vert of Theorem 4:

Let G be an arbitrary graph with vertex set $\{v_1, v_2, ..., v_k\}$. We claim there are sets $A_1, A_2, ..., A_k$ uniquely determined by G such that

 $|A_i \cap A_j|$ is even iff v_i and v_j are joined in G $A_i \subseteq \{1,...,i\}$

Set $A_1 := \{\}$

Suppose we already have choosen $A_1, A_2,...,A_{i-1}$. We search for an A_i which is properly joined to all the sets $A_1, A_2,..., A_{i-1}$, that is, $|A_i \cap A_j|$ must be even iff v_i is joined to v_j in G.

We will obtain A**ⁱ** as the last set in the sequence $B^i_{1} \subseteq B^i_{2} \subseteq ... \subseteq B^i_{i-1} = A_i$ with, for each $1 \leq j < i$, B_j^i is a set properly joined to all sets A₁,A₂,...,A_j .

 $B^i_{\ 0} := \{ i \}$

For j≥1 :

If v_j is joined to v_j set $B^i_{j} := B^i_{j-1}$ or $B^i_{j} := B^i_{j-1} \cup \{j\}$ depending on $|\mathsf{B}^\mathsf{i}_{\mathsf{j-1}}\cap\mathsf{A}_\mathsf{j}|.$ If v_j is not joined to v_i we act dually.

Our choice of whether j is in $\mathsf{B}^\mathsf{i}_\mathsf{j}$ does effect $|B_j \cap A_j|$ (since $j \in A_j$), but none of $|B_j \cap A_k|$ k<j (since $A_k \subseteq \{1,...,k\}$)

