. 11 DENSITY AND UNIVERSALITY

14.6.2004 Martin Jaggi

Book: Stasys Jukna - Extremal Combinatorics

Definitions

Dense setsSize of dense sets

Oniversal sets

- Isolated neightbor condition for graphs
- Equivalence with universal sets
- Construction of very small universal sets using Paley graphs

Full graphs

Definitions

Projections

The projection of a vector $v = (v_1, ..., v_n)$ onto a set of coordinates $S = \{i_1, ..., i_k\}$ is the vector $v|_{s} := (v_{i_1}, ..., v_{i_k})$.

The projection of a set of vectors $A \subset \{0,1\}^n$ is the set $A|_{s} := \{v|_{s} v \in A\}$.

Dense and Universal Sets

A vector set $A \subseteq \{0,1\}^n$ is called (n,k)-universal if the projection of A onto any subset S of k coordinates contains all possible 2^k configurations.

$$\forall S |S| = k A|_{S} = \{0,1\}^{K}$$

A is called (n,k)-dense if the same holds not for all but for at least one subset S of k indices.

$$\exists S |S| = k A|_{s} = \{0,1\}^{k}$$

and (2,1)-universal

but not (2,1)-universal

A is (3,1)-dense and (3,1)-universal A is (3,2)-dense but not (3,2)-universal

Dense sets

What can one say about the size of dense sets ?

 $|A| \ge 2 \implies A (n,1)$ -dense

 $\oslash A(n,k)$ -dense $\Rightarrow |A| \ge 2^k$

There are $\sum_{i=0}^{k-1} {n \choose i}$ vectors in $\{0,1\}^n$ which have less than k ones. These are obviously not (n,k)-dense.

Theorem 1:

(Perles and Shelah 1972 / Sauer 1972 / Vapnik and Chervonenkis 1971)

$A \subseteq \{0,1\}^n$ and $|A| > H(n,k) \implies A(n,k)$ -dense

Proof

Induction on n:

Base cases:

|A| > H(n,1) = 1 means A contains at least two different vectors and hence is (n,1)-dense. $|A| > H(n,n) = 2^{n}-1$ means A is the entire ncube and hence is (n,n)-dense. $n-1 \rightarrow n$:

Let **B** be the projection of A onto the first n-1 coordinates, and **C** the set of all vectors u in $\{0,1\}^{n-1}$ for which both vectors (u,0) and (u,1) belong to A.

|A| = |B| + |C|

If |B| > H(n-1,k) then B is (n-1,k)-dense by induction hypothesis, and hence the whole set A is also (n,k)-dense.

If $|B| \leq H(n-1,k)$ then |C| = |A| - |B| > H(n,k) - H(n-1,k) $= \sum_{i=0}^{k-1} \binom{n}{i} - \sum_{i=0}^{k-1} \binom{n-1}{i}$ $= \sum_{i=1}^{k-1} \binom{n-1}{i-1}$ $= \sum_{j=0}^{k-2} \binom{n-1}{j} = H(n-1,k-1)$

So C is (n-1,k-1)-dense by induction hypothesis. Because C x {0,1} lies in A, the whole set A is also (n,k)-dense.

Universal sets

Isolated neighbor condition

Property of (bipartite) graphs which is equivalent to the universality property of 0-1 vectors.

A vector set $A \subset \{0,1\}^n$ is called (n,k)-universal if the projection of A onto any subset of k coordinates S contains all possible 2^k configurations. $A|_s = \{0,1\}^k \quad \forall S \quad |S| = k$

Bipartite graphs

Given a bipartite graph with parts of size n: $G = (V_1, V_2, E)$ with $|V_1| = |V_2| = n$ we say:

A node $x \in V_2$ is a common neighbor for a set of nodes $A \subseteq V_1$ if x is jointed to each node of A.

A node $x \in V_2$ is a common non-neighbor for a set of nodes $B \subseteq V_1$ if x is jointed to no node of B.

A, B ⊆ V₁ v(A,B) := # nodes in V₂ that are common neighbors of A and common non-neighbors of B at the same time.

v(A,B) = 2

(Gál 1998)

A bipartite graph $G = (V_1, V_2, E)$ satisfies the isolated neighbor condition for k if v(A,B) > 0for any two disjoint subsets $A, B \subseteq V_1$ such that |A| + |B| = k.

Proposition 2:

Let G be a bipartite Graph with parts of size n and C be the set of columns of its adjacency matrix. then:

G satisfies the isolated neighbor condition for k \Leftrightarrow C is (n,k)-universal.

Proof of Proposition 2:

 \Rightarrow

Let $M = (m_{x,y})$ be the adjacency matrix of G. $m_{x,y} = \begin{cases} 1 & (x,y) \in E \\ 0 & \text{otherwise} \end{cases}$

Let $S = \{i_1, ..., i_k\}$ be a subset of k rows of M. Let $v = (v_{i_1}, ..., v_{i_k})$ be an arbitrary vector in $\{0, 1\}^k$.

Is there a column y of M with $y|_{s} = v$?

Split our S into two subsets A and B $j \in A$ iff $v_j = 1$, $j \in B$ iff $v_j = 0$ |A| + |B| = |S| = k

Construction of small universal sets Paley graphs

A bipartite Paley graph is a bipartite graph $G_p = (V_1, V_2, E)$ with parts $V_1 = V_2 = F_p$. $(x,y) \in E$ iff x-y is a non-zero square in F_p .

Where p is a prime number.

Quadratic residue character:

 $\begin{array}{l} \textcircled{} & \chi_{(\mathbf{x})} := \begin{cases} 1 & \exists a \in \mathsf{F}_{\mathsf{p}}^{*} \ x = a^{\mathbf{2}} \\ 0 & x = 0 \\ \exists a \in \mathsf{F}_{\mathsf{p}} \ x = a^{\mathbf{2}} \end{cases} & \mathbf{x} \in \mathsf{F}_{\mathsf{p}} \\ \textcircled{} & \chi_{(\mathbf{x})} = \mathbf{x}^{(p-1)/2} \end{cases} & \forall \mathbf{x} \in \mathsf{F}_{\mathsf{p}} \\ \textcircled{} & \chi_{(\mathbf{x},\mathbf{y})} = \mathbf{x}^{(p-1)/2} \end{cases} & \forall \mathbf{x} \in \mathsf{F}_{\mathsf{p}} \\ \textcircled{} & \chi_{(\mathbf{x},\mathbf{y})} = \chi_{(\mathbf{x})} \cdot \chi_{(\mathbf{y})} \qquad \forall \mathbf{x}, \mathbf{y} \in \mathsf{F}_{\mathsf{p}} \end{cases}$

Theorem (Weil 1948):

Let f(x) be a polynomial over F_p which is not the square of another polynomial and has precisely s distinct zeros. then:

$$\sum_{x \in \mathbb{T}} \chi(f(x)) \bigg| \leq (s-1)\sqrt{p}$$

Proof of Theorem 3:

Remember that (x,y) is an edge in $G_p \Leftrightarrow \chi_{(X-Y)} = 1$.

We say $x' \in V_2$ is the copy of $x \in V_1$ if both these nodes correspond to the same element in F_{p} . No x is joined to its copy x'.

We define

 $\bigcup := V_2 - (A' \cup B')$

where A', B' \subseteq V₂ are the copies of A, B \subseteq V₁

$g(\mathbf{x}) := \prod_{a \in A} (1 + \chi(x - a)) \prod_{b \in B} (1 - \chi(x - b))$ for nodes $\mathbf{x} \in V_2$

For each node $x \in U$, g(x) is non-zero iff x is joined to every node in A and to no node in B, in which case it is precisely 2^k . So $\sum g(x) = 2^k v^*(A, B)$

where v*(A,B) is the number of nodes in U which are joined to every node of A and to no node of B.

$$g(\mathbf{x}) = \prod_{c \in A \cup B} (1 \pm \chi(x - c)) c \in B$$

$$= 1 + \sum_{C \subset A \cup B} (-1)^{|C \cap B|} \chi(f_C(x))$$

where $f_C(x) = \prod (x - 1)^{|C \cap B|} \chi(f_C(x))$

 $c \in C$

$$\left| \sum_{x \in U} g(x) - p \right| \leq \sqrt{p} \left(k \, 2^{k-1} - 2^k + 1 \right) + k \, 2^{k-1}$$

By dividing both sides by 2^k and using $\left(\sum_{x \in U} g(x) = 2^k v^*(A, B)\right)$ we get:

$$|\psi^*(A,B) - 2^{-k}p| \le \sqrt{p} \left(\frac{k}{2} - 1 + \frac{1}{2^k}\right) + \frac{k}{2}$$

and because $|v(A,B) - v^*(A,B)| \le |A' \cup B'| = k$:

$$|v(A,B) - 2^{-k}p| \le \frac{k\sqrt{p}}{2} - \sqrt{p} + \frac{\sqrt{p}}{2^k} + \frac{k}{2} + k$$

for p > 9

D

Theorem 3 together with Proposition 2 gives us, for every prime n > 9and for every k such that $k 2^k < \sqrt{n}$, an explicit construction of (n,k)-universal sets of size **n**.

Using linear codes it is possible to construct such sets of size $n^{O(k)}$ for arbitrary k.

Full graphs

A graph containing of order n is called k-full iff it contains every k-vertex graph as a subgraph.

How many vertices a graph must have to be k-full ?

If G is a k-full graph of order then $\binom{n}{k}$ is at least the number of non-isomorphic subgraphs of order k.

 $\binom{n}{k} \ge \frac{2^{\binom{k}{2}}}{k!} \qquad \Leftrightarrow n(n-1)...(n-k+1) \ge 2^{\frac{k(k-1)}{2}} \\ \Rightarrow n \ge 2^{\frac{(k-1)}{2}}$

Construction of small k-full graphs

Let P_k be the graph of order $n = 2^k$ whose vertices are the subsets of $\{1,...,k\}$, and where two vertices are joined iff $|A \cap B|$ is even. Exception: A is joined to $\{\}$ iff |A| is even.

Theorem 4:

(Bollobás and Thomason 1981)

The graph P_k is k-full.

Proof of Theorem 4:

Let G be an arbitrary graph with vertex set $\{v_1, v_2, ..., v_k\}$. We claim there are sets $A_1, A_2, ..., A_k$ uniquely determined by G such that

 $|A_i \cap A_j|$ is even iff v_i and v_j are joined in G $A_i \subseteq \{1,...,i\}$

Set $A_1 := \{\}$

Suppose we already have choosen $A_1, A_2, ..., A_{i-1}$. We search for an A_i which is properly joined to all the sets $A_1, A_2, ..., A_{i-1}$, that is, $|A_i \cap A_j|$ must be even iff v_i is joined to v_i in G. We will obtain A_i as the last set in the sequence $B_1^i \subseteq B_2^i \subseteq ... \subseteq B_{i-1}^i = A_i$ with, for each $1 \le j < i$, B_j^i is a set properly joined to all sets $A_1, A_2, ..., A_j$.

 $B'_{0} := \{i\}$

For $j \ge 1$:

If v_j is joined to v_i set $B_j^i := B_{j-1}^i$ or $B_j^i := B_{j-1}^i \cup \{j\}$ depending on $|B_{j-1}^i \cap A_j|$. If v_i is not joined to v_i we act dually.

Our choice of whether j is in B_j^i does effect $|B_j^i \cap A_j|$ (since $j \in A_j$), but none of $|B_j^i \cap A_k|$ k<j (since $A_k \subseteq \{1,...,k\}$)

