Contents

1. Sum-Free Sets

3. Zero-Sum Sets

5. Szemerédi's Cube Lemma

Sum-Free Sets

Some definitions

• A is a sum-free set, if:

 $A \subseteq \mathbb{N} \text{ s.t. } x, y \in A \Rightarrow x+y \notin A$

- G: abelian group; $S \subseteq G$ a subset
 - α(S) is the cardinality of the largest sum-free subset S of G
 - for A, B \subseteq G: A+B={a+b | a \in A, b \in B}
 - a subgroup H of G is called proper if $H \neq G$

Observation

• $A \subseteq G$, A sum-free, then:

$$|A| \le \frac{|G|}{2}$$

Proof by contradiction: supp: |A| > |G|/2

- for a ∈ A: |a+A| = |A|
- $x \in a + A \Rightarrow \exists \ \tilde{a} \in A$: $x = a + \tilde{a} \Rightarrow x \notin A$
- 2|A| = |a+A| + |A| > |G|
- $\Rightarrow \exists g \in G: g \in a + A \text{ and } g \in A$

 \rightarrow

Theorem

Let G be a finite abelian group and let p be the smallest prime divisor of |G|. Then:

 $\alpha(G) \le \frac{(p+1)|G|}{3n}$

Lower Bounds for a(G)

- $G = \mathbb{Z}_n$, n even, then $\alpha(G) = |G|/2$
- G = Z, then for any finite S ⊆ Z\{0} : α(S) > |S|/3
- $\alpha(G) \ge \sqrt{|G| 1}$

The best known lower bound for an arbitrary finite abelian group G is: α(G) ≥ 2|G|/7

Kneser's Theorem

Let G be an abelian group. G \neq {0}, and let A, B be nonempty finite subsets of G. If $|A| + |B| \le |G|$, then there exists a proper subgroup H of G such that

page 8

 $|\mathsf{A}+\mathsf{B}| \ge |\mathsf{A}| + |\mathsf{B}| - |\mathsf{H}|$

Proof of Kneser's Theorem

Induction on |B|:

- ii) |B| = 1; Then:
 |A+B| = |A| = |A| + |B| 1≥ |A| + |B| |H| for every subgroup H
- iv) Let |B| > 1 and suppose theorem holds for all finite nonempty subsets A', B' of G for which |B'| < |B|Case 1: $a + b - c \in A \forall a \in A$; b, $c \in B$ Then: $A + b - c = A \forall b, c \in B$ Let $H \coloneqq \langle b - c | b, c \in B \rangle$ Then: $|B| \leq |H|$ and $A + H = A \neq G$ Therefore: H is a proper subgroup of G and: $|A + B| \geq |A| \geq |A| + |B| - |H|$

Proof of Kneser's Theorem

Case 2: $\exists a \in A, b,c \in B \text{ s.t. } (a + b - c) \notin A$ Let $e \coloneqq a - c$; $A' \coloneqq A \cup (B+e)$; $B' \coloneqq B \cap (A-e)$ note: B'is a proper subset of B $c \in B'$ (as $0 \in A - a$) \Rightarrow B'is nonempty \Rightarrow with the induction hypothesis: ∃H proper subgroup of G, s.t. $|A' + B'| \ge |A'| + |B'| - |H|$

page 10

Proof of Kneser's Theorem

Observation:

2. $A' + B' = [A \cup (B+e)] + [B \cap (A-e)]$ $\subseteq (A + B) \cup [(B+e) + (A-e)] = A + B$ 4. $|A'| + |B'| = |A \cup (B+e)| + |B \cap (A-e)|$ $= |A \cup (B+e)| + |(B+e) \cap A|$

|A| + |B+e| - |A ∩ (B+e)|

= |A| + |B+e| = |A| + |B|

page 11

Proof of Theorem

- supp: $A \subseteq G$ sum-free
- Then: $A \cap (A+A) = \emptyset \Rightarrow |A+A| \le |G| |A|$
- Observe that $|A| \le |G|/2$
- Then: |G| |A| ≥ |A+A| ≥ 2|A| |H| for some proper subgroup H of G.
- Lagrange: |H| divides |G|
- ⇒ |H| ≤ |G|/p since p is the smallest prime divisor of G
- Therefore: $3|A| \le |G| + |H| \le (1 + 1/p)|G|$

Zero-Sum Sets

Definition

 A sequence of (not necessarily) distinct numbers b₁,..., b_m is a zero-sum sequence (modulo n) if the sum b₁+...+b_m is 0 (modulo n)

Proposition

- Suppose we are given a sequence of n integers a₁,...a_n, which need not be distinct. Then there is always a set of consecutive numbers a_{r+1}, a_{r+2}, ..., a_s whose sum is divisible by n.
 - → For a sequence of less than n integers this is not necessarily true:

n-1

Pigeonhole Principle

• n pigeonholes:

page 16

- sequences (a₁), (a₁, a₂), ..., (a₁, ..., a_n)
- place a sequence $(a_1, ..., a_i)$ into pigeonhole k, if $a_1 + ... + a_i = k \mod n$
- i) \exists sequence in the pigeonhole $0 \Rightarrow$ sequence is divisible by n
- ii) ∄ sequence in the pigeonhole 0 ⇒ n sequences are placed in (n-1) pigeonholes ⇒ some two of them must lie in the same pigeonhole
- Let $(a_1, ..., a_r)$ and $(a_1, ..., a_s)$ be these two sequences
- With r < s: $a_{r+1} + ... + a_s$ is divisible by n

Question

• We know:

Every sequence of n numbers has a zerosum subsequence modulo n

Question:

How long must a sequence be so that we can find a subsequence of n elements whose sum is divisible by n?

Theorem: Erdös-Ginzburg-Ziv

Any sequence of 2n – 1 integers contains a subsequence of cardinality n, the sum of whose elements is divisible by n

Cauchy-Davenport Lemma

If p is a prime, and A, B, are two nonempty subsets of \mathbb{Z}_p , then

$|A+B| \ge \min\{p, |A| + |B| - 1\}$

Proof: Follows directly from Kneser's Theorem

page 19

Proof of the Theorem

Case 1: n=p a prime number w.l.o.g: $a_1 \le a_2 \le \dots \le a_{2p-1}$ i) $\exists i \leq p-1 \text{ s.t. } a_i = a_{i+p-1} \Rightarrow a_i + a_{i+1} + ... + a_{i+p-1} = pa_i = 0 \mod p$ ii) otherwise: $A_i \coloneqq \{a_i, a_{i+p-1}\}$ for $1 \le i \le p-1$ Repeatedly apply the Cauchy- Davenport lemma: $\Rightarrow |A_1 + ... + A_{p-1}| = p \Rightarrow \mathbb{Z}_p = A_1 + ... + A_{p-1}$ i.e. Every element of \mathbb{Z}_p is a sum of precisely p-1 of the first 2p-2 elements of our sequence in particular: $-a_{2p-1}$ is such a sum: $-a_{2p-1} \in A_1 + \ldots + A_{p-1}$ \Rightarrow This supplies us with our p-element subset whose sum is 0

Proof of the Theorem

2) general case:

induction on the number of primes in the prime factorization of n

- given $(a_1, ..., a_{2n-1})$ with n = pm; p: prime
- case i) ⇒ each subset of 2p-1 members of the sequence contains a p-element subset whose sum is 0 mod p
- *l* ≔ # pairwise disjoint p-element subsets I₁, ..., I_ℓ of {1, ..., 2n-1}, with Σ_{j∈ I_i} = 0 (mod p) i=1,..., ℓ
 l ≥ 2m 1
 l ≥ 2m 1
 l ≤ 2m 1
 l = 0
 l ≤ 2m 1
 l = 0
 l = 0
 l = 0
 l ≤ 2m 1
 l = 0
 l = 0

Proof of the Theorem

- from now on: *ℓ*=2m-1
- define a sequence $b_1, ..., b_{2m-1}$ where $b_i = \sum_{j \in I_i} \frac{a_j}{p} \quad \forall i = 1, ... \ell$

Induction hypothesis: sequence has a subset {b_i:
 i ∈ J} of |J| = m whose sum is divisible by m
 ⇒ {a_j: j ∈ ∪I_i} supplies n-element subset of the original sequence divisible by n = pm

Szemerédi's Cube Lemma

Definition: Affine d-cube

A collection C of integers is called an affine d-cube if there exists d+1 positive integers $x_0, x_1, ..., x_d$ so that

$$C = \{x_0 + \sum_{i \in I} x_i : I \subseteq \{1, 2, ..., d\}\}$$

- → We write C=C($x_0, x_1, ..., x_d$) if an affine cube is generated by $x_0, x_1, ..., x_d$.
- example: a, a + b, a + 2b, ... a + db
 → C=C(a,b,b,...,b)

Szemerédi's Lemma

For any $0 < \epsilon < 1$ and positive integer d, there exists $n_0 = n_0(\epsilon, d)$ such that, for all $n \ge n_0$, every subset A of $\{1, ..., n\}$ of size $|A| > \epsilon n$ contains an affine d-cube.

Ramsey-Type Version of Szemerédi's Lemma

For every $d, r \ge 1$ there exists an n = N(d, r) with the following property. If we color the set 1, ...n in r colors then all the elements of at least one affine d-cube lying in this set will receive the same color.


```
    Induction on d

i) d = 1: N(1,r) = r+1
ii)assume: n = N(r, d-1) exists
  N = N(r,d) = r^{n} + n
  Now:
  Color {1, ..., N} with r colors
```


- Consider strings of length n:
 - i, i+1, ..., i+n-1 for $1 \le i \le r^n + 1$
- Observation:
- 1. There are r^{n} + 1 such strings.
- 2. There are rⁿ possibilities to color one string.
 - ⇒ 2 strings will receive the same sequence of colors (pigeon hole principle)

Consider these two sequences with i < j

i i+1 i+2 i+n-1 j j+1 j+2 j+n-1
i.e. for each x in {i, i+1, ..., i+n-1} the numbers x and x + (j-i) receive the same color.

- By induction: The set {i, i+1, ..., i+n-1} contains an affine (d-1)-cube C=C(x₀, x₁, ..., x_{d-1})
- Then: All the numbers of C(x₀, x₁, ..., x_{d-1}, j-i) have the same color
- $j-i \le r^n \Rightarrow$ cube lies in $\{1, \dots, N\}$

Density-Version of the Lemma

Let $d\geq 2$ be given. Then, for every sufficiently large n, every subset A of $\{1,...,n\}$ of size $|A|\geq (4n)^{1-1/2^{d-1}}$

page 30

contains an affine d-cube.

- $B_i \coloneqq \{b \in B : b + i \in B\}$
- Note that

$$\sum_{i=1}^{n-1} |B_i| = \binom{|B|}{2}$$

⇒ For B ⊆ {1,...N} and |B| ≥ 2 ∃ i ≥ 1 so that $|B_i| > \frac{|B|^2}{4n}$

page 31

• For A: $\exists i_1 \ge 1$ s.t. $|A_{i_1}| > \frac{|A|^2}{4n} \ge \frac{(4n)^{2-2/2^{d-1}}}{4n} = (4n)^{1-1/2^{d-2}}$

• Find i₂ so that

$$|A_{i_1,i_2}| = |(A_{i_1})_{i_2}| > \frac{|A_{i_1}|^2}{4n} \ge \frac{(4n)^{2-2/2^{d-2}}}{4n} = (4n)^{1-1/2^{d-3}}$$

Proceed like this until

$$|A_{i_1,i_2,\dots,i_{d-1}}| > (4n)^{1-1/2^{d-d}} = 1$$

page 32

 Set A_{i1,...,id-1} has still at least 2 elements
 ⇒ Apply the fact once more: Now: A_{i1,...,id} contains at least on element b₀

•
$$A_{i_1} = \{b: b \in A, b + i_1 \in A\}$$

 $A_{i_1, i_2} = \{b: b \in A, b + i_1 \in A, b + i_2 \in A, b + i_1 + i_2 \in A\}$
etc.

- A_{i1,...,id} determines an affine d-cube
 C=C(b₀, i₁, ..., i_d)
- C lies entirely in A

