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Some definitions

• A is a sum-free set, if:
A ⊆ ℕ s.t. x,y ∈ A ⇒ x+y ∉ A

• G: abelian group; S ⊆ G a subset
– α(S) is the cardinality of the largest sum-free 

subset S of G
– for A, B ⊆ G: A+B={a+b | a ∈ A, b ∈ B}
– a subgroup H of G is called proper if H ≠ G
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Observation

• A ⊆ G, A sum-free, then:

Proof by contradiction: supp: |A| > |G|/2
• for a ∈ A: |a+A| = |A|
• x ∈ a+A ⇒ ∃ ã ∈ A: x = a+ã ⇒ x ∉ A
• 2|A| = |a+A| + |A| > |G|
• ⇒ ∃ g ∈ G: g ∈ a+A and g ∈ A ⇥⇤
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Theorem

Let G be a finite abelian group and let p be 
the smallest prime divisor of |G|. Then:
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Lower Bounds for α(G)

• G = ℤn, n even, then α(G) = |G|/2
• G = ℤ, then for any finite S ⊆ ℤ\{0} :

α(S) > |S|/3 
•   

The best known lower bound for an arbitrary finite 
abelian group G is: 

α(G) ≥ 2|G|/7
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Kneser‘s Theorem

Let G be an abelian group. G ≠ {0}, and let 
A, B be nonempty finite subsets of G. 
If |A| + |B| ≤ |G|, then there exists a proper 
subgroup H of G such that

|A+B| ≥ |A| + |B| - |H|
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Proof of Kneser‘s Theorem

Induction on |B|:
ii) |B| = 1; Then:

|A+B| = |A| = |A| + |B| - 1≥ |A| + |B| - |H| for every 
subgroup H

iv) Let |B| > 1 and suppose theorem holds for all finite 
nonempty subsets A´, B´ of G for which |B´| < |B|
Case 1: a + b – c ∈ A ∀a ∈ A; b, c ∈ B
Then: A + b – c = A ∀b,c ∈ B
Let H ≔ <b-c | b,c ∈ B>
Then: |B| ≤ |H| and A + H =A ≠ G
Therefore: H is a proper subgroup of G and:
|A + B| ≥ |A| ≥ |A| + |B| - |H|
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Proof of Kneser‘s Theorem

Case 2: ∃a ∈ A, b,c ∈ B s.t. (a + b – c) ∉ A
Let e ≔ a – c; A´ ≔ A ∪ (B+e); B´ ≔ B ∩ (A-e)
note: B´is a proper subset of B 
c ∈ B´ (as 0 ∈ A – a) ⇒ B´is nonempty
⇒ with the induction hypothesis:
∃H proper subgroup of G, s.t.
|A´+ B´| ≥ |A´| + |B´| - |H|
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Proof of Kneser‘s Theorem

Observation:
2. A´+ B´= [A ∪ (B+e)] + [B ∩ (A-e)]

  ⊆ (A + B) ∪ [(B+e) + (A-e)] = A + B
4. |A´| + |B´| = |A ∪ (B+e)| + |B ∩ (A-e)|

     = |A ∪ (B+e)| + |(B+e) ∩ A|

= |A| + |B+e| = |A| + |B|
|A| + |B+e| - |A ∩ (B+e)|
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Proof of Theorem

• supp: A ⊆ G sum-free
• Then: A ∩ (A+A) = ∅ ⇒ |A+A| ≤ |G| - |A| 
• Observe that |A| ≤ |G|/2
• Then: |G| - |A| ≥ |A+A| ≥ 2|A| - |H| for some 

proper subgroup H of G.
• Lagrange: |H| divides |G|
• ⇒ |H| ≤ |G|/p since p is the smallest prime divisor 

of G
• Therefore: 3|A| ≤ |G| + |H| ≤ (1 + 1/p)|G|



Zero-Sum Sets
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Definition

• A sequence of (not necessarily) distinct 
numbers b1,…, bm is a zero-sum sequence 
(modulo n) if the sum b1+…+bm is 0 
(modulo n)
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Proposition

• Suppose we are given a sequence of n 
integers a1,..an, which need not be distinct. 
Then there is always a set of consecutive 
numbers ar+1, ar+2, … , as whose sum is 
divisible by n.
 For a sequence of less than n integers   
  this is not necessarily true:

(1,1,…, 1) mod n
  n-1
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Proof: 

Pigeonhole Principle

• n pigeonholes:

• sequences (a1), (a1, a2), …, (a1, …, an) 
• place a sequence (a1,.., ai) into pigeonhole k, if a1+…+ai = k mod n
• i) ∃ sequence in the pigeonhole 0 ⇒ sequence is divisible by n
• ii) ∄ sequence in the pigeonhole 0 ⇒ n sequences are placed in 

(n-1) pigeonholes ⇒ some two of them must lie in the same 
pigeonhole

• Let (a1, …, ar) and (a1, …, as) be these two sequences
• With r < s: ar+1+…+ as is divisible by n

…...
0 1 2 n-1
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Question

• We know:
Every sequence of n numbers has a zero-
sum subsequence modulo n

Question: 
How long must a sequence be so that 
we can find a subsequence of n 
elements whose sum is divisible by n?
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Theorem: Erdös-Ginzburg-Ziv

Any sequence of 2n – 1 integers 
contains a subsequence of 
cardinality n, the sum of whose 
elements is divisible by n
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Cauchy-Davenport Lemma

If p is a prime, and A, B, are two non-
empty subsets of ℤp, then

|A+B| ≥ min{p, |A| + |B| - 1}

Proof: Follows directly from Kneser‘s 
Theorem
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Proof of the Theorem

Case 1: n=p a prime number
   w.l.o.g: a1 ≤ a2 ≤ … ≤ a2p-1

i) ∃i ≤ p-1 s.t. ai= ai+p-1 ⇒ ai + ai+1 +…+ ai+p-1 = pai = 0 mod p
ii) otherwise: Ai ≔ {ai, ai+p-1} for 1 ≤ i ≤ p-1

Repeatedly apply the Cauchy- Davenport lemma: 
⇒ |A1 + … + Ap-1| = p  ⇒ ℤp = A1 + … + Ap-1

  i.e. Every element of ℤp is a sum of precisely p-1 of the first 2p-2 
elements of our sequence
in particular: -a2p-1 is such a sum: -a2p-1 ∈ A1 + … + Ap-1 

 ⇒This supplies us with our p-element subset whose sum is 0
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Proof of the Theorem

2) general case: 
induction on the number of primes in the prime 
factorization of n

- given (a1, …, a2n-1) with n = pm; p: prime
- case i) ⇒ each subset of 2p-1 members of the 

sequence contains a p-element subset whose sum is 
0 mod p

- ℓ ≔ # pairwise disjoint p-element subsets I1, …, Iℓ of 
{1, …, 2n-1}, with     i=1,.., ℓ

- ℓ ≥ 2m – 1 
Σ aj ≡ 0 (mod p)
j ∈ Ii
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Proof of the Theorem

• from now on: ℓ=2m-1
• define a sequence b1, …, b2m-1 where

                            ∀ i = 1, .. ℓ

• Induction hypothesis: sequence has a subset {bi : 
i ∈ J} of |J| = m whose sum is divisible by m
⇒ {aj : j ∈ ⋃Ii} supplies n-element subset of the 
original sequence divisible by n = pm
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Definition: Affine d-cube

A collection C of integers is called an affine d-cube 
if there exists d+1 positive integers x0, x1, …, xd so 
that

 We write C=C(x0, x1, …, xd ) if an affine cube is 
generated by x0, x1, …, xd .

• example: a, a + b, a + 2b, … a + db
 C=C(a,b,b,…,b)
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Szemerédi’s Lemma
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Ramsey-Type Version of 
Szemerédi’s Lemma
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Proof

• Induction on d
i) d = 1: N(1,r) = r+1
ii)assume: n = N(r, d-1) exists

N = N(r,d) ≔ rn + n
Now:

   Color {1, …, N} with r colors
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Proof

• Consider strings of length n:
i, i+1, … , i+n-1 for 1 ≤ i ≤ rn + 1

• Observation:
1.There are rn + 1 such strings.
2.There are rn possibilities to color one string.

⇒ 2 strings will receive the same sequence of 
colors (pigeon hole principle)
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Proof

• Consider these two sequences with i < j

• i.e. for each x in {i, i+1, … , i+n-1} the numbers x and 
x + (j-i) receive the same color.

• By induction: The set {i, i+1, … , i+n-1} contains an 
affine (d-1)-cube C=C(x0, x1, …, xd-1 )

• Then: All the numbers of C(x0, x1, …, xd-1, j-i) have the 
same color

• j-i ≤ rn ⇒ cube lies in {1,…, N}

 i  i+2 i+1  i +n-1  j  j+2 j+1  j +n-1
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Density-Version of the Lemma
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Proof

• Bi ≔ {b ∈ B: b+i ∈ B}
• Note that

⇒ For B ⊆ {1,…N} and |B| ≥ 2 ∃ i ≥ 1 so that

• For A: ∃ i1 ≥ 1 s.t.
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Proof

• Find i2 so that

• Proceed like this until

• Set Ai1,…,id-1 has still at least 2 elements
⇒ Apply the fact once more: 

Now: Ai1,…,id contains at least on element b0
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Proof

• Ai1 = {b: b ∈ A, b + i1 ∈ A}
Ai1, i2 = {b: b ∈ A, b+i1 ∈ A, b+i2 ∈ A, b+i1+i2 ∈ A}

etc.
• Ai1,…,id  determines an affine d-cube 

C=C(b0, i1, …, id) 
• C lies entirely in A
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