Intersecting Families

Extremal Combinatorics Philipp Zumstein

A famil empty	y of sets is in ntersection.	tersecting if any two	of its sets have a non-	
Let $\mathcal F_{-}$ be an intersecting family of subsets of $\{1,,n\}$ = [n].				
Question: How large can such a family be?				
Take all subsets containing a fixed element.				
This is	an intersectino	g family with		
		$ \mathcal{F} = 2^{n-1}$		
Can we	find larger int	tersecting families?	No!	
A set a	n its complem	ent cannot both be m	embers of ${\cal F}$	
So we	jet:	$ \mathcal{F} \leq 2^{n-1}$		

<u>Second case: n ≥ 2k</u>					
Take all the k-element subsets containing a fixed element.					
Examples:	n = 5, $k = 2$, fix the element 1				
	{1,2}, {1,3}, {1,4}, {1,5}				
	n = 5, $k = 3$, fix the element 1				
	$\{1,2,3\},\ \{1,2,4\},\ \{1,2,5\},\ \{1,3,4\},\ \{1,3,5\},\ \{1,4,5\}$				
This is an intersecting family with $m = 1$					
	$ \mathcal{F} = \binom{n-1}{k-1}$				
Can we find larger intersecting families?					

A projective plane of order q consists of a set X of elements called A projective plane of order q consists of a set X of elements called points and a family $\mathcal L$ of subsets of X called lines having the following points and a family \mathcal{L} of subsets of X called lines having the following properties: properties: (i) Each pair of points determines a unique line. (i) Each pair of points determines a unique line. (ii) Every line has q+1 points. (ii) Every line has q+1 points. (iii) There are q2+q+1 points. (iii) There are q2+q+1 points. Proposition: Proposition: A projective plane of order q has the following properties: A projective plane of order q has the following properties: (a) Any point lies on q+1 lines. (a) Any point lies on q+1 lines. (b) There are q²+q+1 lines. (b) There are q2+q+1 lines (c) Each two lines intersect in exactly one point. (c) Each two lines intersect in exactly one point. **Proof:** (b) Counting the pairs (x,L) with $x \in L$ in two ways: **Proof:** (c) Let L_1 and L_2 be lines, and x a point of L_1 (and not L_2). Then the q+1 points from L₂ are joined to x by different lines. $\sharp\{(x,L); x \in L\} = |X|(q+1) = (q^2 + q + 1)(q+1)$ x lies on exactly q+1 lines. So one of this lines has to be L_1 . But then, L_1 and L_2 intersect in exactly one point. $= |\mathcal{L}|(q+1)$

	Example: Fano Plane				
q = 2 Projectiv	$q=2 \label{eq:q}$ Projective plane with 7 points and 3 points on a line.				
K = GF(2), V = K ³ - 000 = { 001, 010, 011, 100, 101, 110, 111 } These are also the points.					
Lines:					
v ∈ V 001 010 011 100 101 110 111	equation: $x_2 = 0$ $x_1 = 0$ $x_1+x_2 = 0$ $x_0 = 0$ $x_0+x_2 = 0$ $x_0+x_1 = 0$ $x_0+x_1+x_2 = 0$	$ Ine: \\ L(001) = \{ 010, 100, 110 \} \\ L(010) = \{ 001, 100, 101 \} \\ L(011) = \{ 011, 100, 111 \} \\ L(100) = \{ 010, 001, 011 \} \\ L(101) = \{ 010, 101, 111 \} \\ L(110) = \{ 001, 110, 111 \} \\ L(111) = \{ 011, 101, 110 \} $			

Bruck-Chowla-Ryser Theorem:

If a projective plane of order n exists, where n is congruent 1 or 2 modulo 4, then n is the sum of two squares of integers.

There is no projective plane of order 6 or 14.

What about 10? Is there a projective plane of order 10? 1988: There is no projective plane of order 10

Open Question: Is there a projective plane of order 12?

4. Every line has q+1 points.

properties:

- 5. There are q^2+q+1 points. 6. There are q^2+q+1 lines.

If $q = p^r$ is a power of a prime number, then there exist a projective plane of order q.

