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A familiy of sets is intersecting if any two of its sets have a non-
empty intersection.

A familiy of sets is intersecting if any two of its sets have a non-
empty intersection.

Let F be an intersecting family of subsets of {1,...,n} = [n].

Question: How large can such a family be? |

Take all subsets containing a fixed element.

This is an intersecting family with
|7 = 2"
Can we find larger intersecting families? ~ No!
A set an its complement cannot both be members of F

So we get:

Let 7 be an intersecting family of k-element subsets of {1,...,n} = [n].

Question: How large can such a family be? |

Trivial upper bound: n
171 < ()

First case: n < 2k:

- Every pair of k-element subsets of [n] has a non-empty intersection.

- So we could choose F as the set of all k-element subsets of [n]

- So the trivial upper bound is sharp.

Second case: n 2 2k
Take all the k-element subsets containing a fixed element.
Examples: n=>5, k=2, fix the element 1

{1,2}, {1,3}, {1,4}, {1,5}

n =5, k =3, fix the element 1

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}
This is an intersecting family with
n—1
F=(,_,)

Can we find larger intersecting families?

Theorem: (Erd6s-Ko-Rado, 1961)
If 2k < n then every intersecting family of k-element subsets of

-1
an n-element set has at most (: 1) members.




Proof: (due to G.O.H. Katona, 1972)

W.l.o.g. we can assume X = {0,1,...,n-1}.
For se X, define

Bs:={s,s+1,....,s+k—-1}C X,
where the addition is modulo n.

Claim: At most k of the sets B, can belong to 7

Claim: At most k of the sets B can belong to 7

Proof: Assume B, eF
0

There are 2k-2 sets that intersect with B,. These sets can
partioned into k-1 pairs of disjoint sets B, B,,,,
where —(k-1) £ i<-1.

Since F can contain at most one set of each pair the assertion
of the claim follows.

O

Proof: W.l.o.g. we can assume X ={0,1,...,n-1}.
For se X, define
Bs:={s,s+1,....,s+k—-1}C X,
where the addition is modulo n.
Claim: At most k of the sets B, can belong toF
L = ,number of pairs (TT,s), where T is a permutation of X and s
is a point of X, such that the set T(B,) = {T7(s), (s+1),..., TI(s+k-1)}
belongs to F*

Double counting:

L < kn!
L = n|F|k!(n— k)!
Together:
n—1
F| <
FI<(,_ 1)

Summary

A familiy of sets is intersecting if any two of its sets have a non-empty
intersection.

Let F be a family of subset of Let F be a family of k-element
{1,...n} =[n). subsets of {1,...,n} = [n].

| Question: How large can such a family be? (Maximum)

n<2k: nz2k:
F<() [ E<(GD)

Erdés-Ko-Rado

Projective planes

A projective plane of order ¢ consists of a set X of elements called
points and a family L of subsets of X called lines having the following
properties:

. Each pair of points determines a unique line.
. Each two lines intersect in exactly one point.
. Any point lies on g+1 lines.

. Every line has g+1 points.

. There are g2+q+1 points.

. There are g?+q+1 lines.
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A projective plane of order ¢ consists of a set X of elements called
points and a family £ of subsets of X called lines having the following
properties:

(i) Each pair of points determines a unique line.

(ii) Every line has g+1 points.

(iii) There are g?+g+1 points.

Proposition:

A projective plane of order g has the following properties:
(a) Any point lies on g+1 lines.

(b) There are g2+g+1 lines.

(c) Each two lines intersect in exactly one point.

Proof: (a) Take a point x
There are q(q+1) other points (1
Each line through x contain q further points (ii
Two such lines don't overlap (apart from x) (1
Each point lies on a line through x (
So, there are exactly g+1 lines through x.




A projective plane of order q consists of a set X of elements called
points and a family £ of subsets of X called lines having the following
properties:

(i) Each pair of points determines a unique line.

(ii) Every line has g+1 points.

(iii) There are g2+q+1 points.

A projective plane of order q consists of a set X of elements called
points and a family £ of subsets of X called lines having the following
properties:

(i) Each pair of points determines a unique line.

(ii) Every line has g+1 points.

(iii) There are g2+q+1 points.

Proposition:

A projective plane of order g has the following properties:
(a) Any point lies on g+1 lines.

(b) There are g2+g+1 lines.

(c) Each two lines intersect in exactly one point.

Proof: (b) Counting the pairs (x,L) with xeL in two ways:

t{(z,L);z€ L} = |X|(g+1)=(®+q+1)(g+1)
[£](g+1)

Proposition:

A projective plane of order g has the following properties:
(a) Any point lies on g+1 lines.

(b) There are g2+g+1 lines.

(c) Each two lines intersect in exactly one point.

Proof: (c) Let L, and L, be lines, and x a point of L, (and not L,).
Then the g+1 points from L, are joined to x by different lines.
x lies on exactly g+1 lines.
So one of this lines has to be L,.
But then, L, and L, intersect in exactly one point.

Example and Duality

q=1:

Points: X
Lines: £={{0,1},{1,2}, {2,0}}

0 a 1 a b

projective plane of order 1 dual projective plane

The construction

Let g = p" where p is prim and r is an positive integer.
Look at field Fq = GF(q) =: K
And the vectorspace K2

We define our points as 1-dimensional subspaces of K3, i.e.
[0, z1,22] := {(cz0, cx1,c22); ¢ € Fg,c # O}

for (Xo,X,%,) € V = K®-(0,0,0).
(Note: If x, = x; = x, = 0 then this is a 0-dimensional subspace. So we
don't allow this case.)

Such a point is a set of g-1 vectors from V.
There are (q%-1) / (9-1) = g?+g+1 such points.

This shows condition (iii).

Let g = p" where p is prim and r is an positive integer.
Look at field Fq = GF(q) =: K

For (Xg,X1,X,) € V := K2 - (0,0,0) we define the points

[z0, 1, 22] := {(exo, cx1, cx2); ¢ € Fg,c 7 0}

The line L(ay,a,,a,), where (ay,a,,a,) € V, is defined to be the set of all
those points [xo,X4,X,] for which

ApXo + A1Xy + AXp = 0.

Two triples (Xq,%;,X,) @nd (CX,,CX,,CX,) either both satisfy this equation or
none does.

How many points does such a line have?

Because (a,,a,,3,) €V, this vector has at least one nonzero
component; say a, # 0.

Chose x, and x, arbitrary not both 0 and (because K is a field) we can
uniquely determine X,.

So we get g3-1 solutions (x4,X;,X,) € V. These are g+1 points.

This shows (ii).

Let g = p" where p is prim and r is an positive integer.
Look at field Fq = GF(q) =: K

For (xo,%1,Xp) € V := K8 - (0,0,0) we define the points
[z0,z1,22] 1= {(cz0,cz1,cx2); c € Fg,c # 0}

The line L(a,,a,,a,), where (a,,a;,a,) € V, is defined to be the set of all
those points [xo,X4,X,] for which

pXo + a1Xy + AXp = 0.

Let [x0,X1,%,] @nd [yo,Ys,Y.] be two distinct points. How many lines
contain both these points? For each such line L(a,,a,,a,)

apXg + aXq + aXp =0
Yo + a1Ys + 3y, =0

Since the matrix
(Io 1 12)

Yo Y1 ¥2

has rank 2 (the rows are linearly independent), the solution-space is 1-
dimensional, i.e. one point. This shows (i).




Example: Fano Plane

100
q=2
Projective plane with 7 points and 3 points on a line.
K = GF(2),
V = K8 -000 = {001,010, 011, 100, 101, 110, 111}
These are also the points.

110 101
Lines:
veV equation: line:
001 X, =0 L(001) ={ 010, 100, 110}
010 Xy = L(010) ={ 001, 100, 101} 111
011 X+X, =0 L(011) ={ 011, 100, 111}
100 Xo = L(100) = { 010, 001, 011}
101 Xo+Xp = 0 L(101) ={ 010, 101, 111} 010 o 001
110 XotX; =0 L(110) ={ 001, 110, 111} 011
111 XotXi+X, = 0 L(111) ={ 011,101,110}
Bruck-Chowla-Ryser Theorem: S
ummary

If a projective plane of order n exists, where n is congruent 1 or 2
modulo 4, then n is the sum of two squares of integers.

There is no projective plane of order 6 or 14.

What about 107 Is there a projective plane of order 10?
1988: There is no projective plane of order 10

Open Question: Is there a projective plane of order 12?

A projective plane of order g consists of a set X of elements called
points and a family L of subsets of X called lines having the following
properties:

. Each pair of points determines a unique line.
. Each two lines intersect in exactly one point.
. Any point lies on g+1 lines.

. Every line has g+1 points.

. There are g2+q+1 points.

. There are g?+q+1 lines.
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If g = p"is a power of a prime number, then there exist a projective
plane of order qg.

Maximal intersecting families

Let F be a k-uniform family of sets of some n-element set.

F is maximal intersecting if
(i) is intersecting;
(i) the addition of any new k-element set toF destroys this property.

Maximal intersecting families

Let F be a k-uniform family of sets of some n-element set.

Examples: n=8,k=2

F={{1,2},{1,3},{1,4}, {1.5}, {1.6}, {1,7}, {1.8}}

Can we get a maximal intersecting family with fewer subsets?  Yes!

F={{1.2},{23}{3.1}} 3

F is maximal intersecting if
(i) is intersecting;
(i) the addition of any new k-element set toF destroys this property.

Example: n=7,k=3
F={{1,23}, {1,4,5}, {1.6,7},{2,4,6}, {2,5,7}, {3,4,7}, {3,5,6} }

{4.,5,6}, {2,3,6}, {2,3,4},{1,3,5}, {1,3,4}, {1,2,5}, {1,2,4}
{457}, {2,3,7}, {235}, {1,3,7}, {1,3,6}, {126}, {127}
4,6,7), {2,6,7), {2,4,5), {1,5,7},{1,4,6}, {1,5.6}, {1,4,7}

{5.6.7},{3,6,7}, {3,4,5),{3,5,7}, {3.4,6},{2,5,6}, {2.4.7}

Is this family maximal intersecting?  yes!




Example: n=7,k=3
F={{1,23}, {1,4,5}, {16,7},{2,4,6}, {257}, {3,4,7}, {3,5,6} }
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One case: n < 2k:
The only maximal intersecting family is the family of all k-element subsets.

Another case: n 2 k?-k+1:

Consider the family F of lines in a projective plane of order k-1.

There are k?-k+1 lines and each line is a k-element subset of an n-
element set of points. Any two lines intersect in precisely one point; so F
is intersecting.

Claim: F is maximal intersecting

Proof: (indirect) Let E be a k-element set which intersects all the lines.
Assume E is not a line (i.e. E is not a member of F).
Take two points x # y of E.
Let L be the line through x and y.
Take apointze L - E.
z belongs to k lines, and each of them intersect E.
The intersection with L contains at least 2 elements x,y.
|E| > k. ]

Theorem (Fiiredi, 1980):

Let F be a maximal intersecting family of k-element sets of an
n-element set. Then

0 222

2
; S 2 <
(ii) In particular: |F| > k< for n < S0k

Proof: (i) N = ,number of pairs (F,E) where FE F and E is a k-element subset
disjoint from F (and hence, E & F )*

Double counting!
w
N > —|F
> () - 17

vei#- (")

k
IFlzi( )
2\n—k

2
(ii) The (stronger) assumption n < ki
~142logk

Together

leads to |]—‘| > k2 [ |

A Helly-type result

E. Helly, 1923:

If n 2 k+1 convex sets in R¥ have the property that any k+1 of them
have a nonempty intersection, then there is a point common to all of
them.

Special case: k = 1:
convex sets in R = intervals

We take n 2 2 such intervals with the property that any two of them have
a nonempty intersection. We claim that there is a point common to all of

them.

A Helly-type result

LetF be a family and k be the minimum size of its member. If any k+1
members of F intersect (i.e. , share a common point) then all of them do.

Proof: Assume the opposite, that the intersection of all sets inF is empty.
Take a set A = {X;,....xJ €F of minimum size.
X; is not in every set of
foreveryi=1, ...,k
So, there is a set BE F such thatx; ¢ B,

We get
ANB1N...NB, =10




