
Chapter 1

Some Basic Geometry

This chapter reviews some basic geometric facts that we will need during the
course.

1.1 Affine Geometry

We will assume that you are familiar with the basic notions of linear algebra,
such as vector spaces (a.k.a. linear spaces) and linear subspaces, linear depen-
dence/independence, dimension, linear maps, and so forth. For the most part,
we will work with the d-dimensional real vector space d.

If we think of d as vector space, then the origin 0 = (0, . . . , 0) plays a distin-
guished role. If we are studying a problem that is invariant under translations,
it is often more natural to work in the setting of “affine geometry”.

A subset A ⊆ d is called an affine subspace if either A = ∅ or A is a ”shifted”
or ”translated” linear subspace, i.e., A = v + L, where L is a linear subspace
and v ∈ d. Note that L is uniquely determined by A (why?), but generally v is
not. The dimension dim A is defined as −1 if A = ∅ and as dim L otherwise. If
p1, . . . , pn ∈ d, n ≥ 1, and if λ1, . . . , λn ∈ are real coefficients with

∑n
i=1 λi =

1, then λ1p1 + . . . + λnpn is called an affine combination of the pi’s. (Thus, an
affine combination is a linear combination such that the coefficients sum to 1.)
The affine hull of an arbitary subset S ⊆ d is defined as the set of all affine
combinations of points in S,

aff(S) := {λ1p1 + . . . + λnpn : n ≥ 1, p1, . . . , pn ∈ S, λ1, . . . , λn ∈ ,
n

∑

i=1

λi = 1}.

The affine hull aff(S) is the smallest affine subspace containing S. An affine
dependence between points p1, . . . , pn ∈ d is a linear dependence α1p1 + . . .+
αnpn = 0 (where α1, . . . , αn ∈ ) such that

∑n
i=1 αi = 0. (Thus, in an affine

combination, the coefficients sum to 1, while in an affine dependence, they
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sum to 0.) The affine dependence is called nontrivial if there is some i with αi &=
0. The points p1, . . . , pn are called affinely dependent if there exists a nontrivial
affine dependence between them, and affinely independent otherwise.

It is easy to show (do it!) that points p1, . . . , pn ∈ d are affinely indepen-
dent iff the differences p2−p1, . . . , pn−p1 between one of them and all the others
are linearly independent vectors (of course, instead of p1, we could chose any
pi as the base point).

An affine map f : d → k is one that can be expressed as the combination
of a linear map and a translation. Thus, in coordinates, f can be written as
f(x) = Ax + b, where A is a real (k × d)-matrix and b ∈ k. The composition of
affine maps is again an affine map.

The space d itself leads some kind of double existence. If we think of it as
a vector space, we refer to its elements as vectors, and if we think of d as an
affine space, we refer to its elements as points. Often, it is suggested to use the
notion of points as the primitive one and to speak of a vector when we think
of the oriented difference p − q between two points. At any rate, it is often
convenient not to distinguish too carefully between the two viewpoints.

We remark that apart from the origin 0, there is another a special point/vector
that we will use so frequently that it is worthwhile to introduce a special nota-
tion: 1 := (1, . . . , 1), where we assume (as in the case of the origin 0) that the
dimension is clear from the context.

1.2 Euclidean Space

We often associate a further piece of structure with d, the scalar product. For
v = (v1, . . . , vd) and w = (w1, . . . , wd) ∈ d, it is denoted by 〈v, w〉 or by v · w
(both notations have their advantages, so we will take the liberty of sometimes
using one, sometimes the other). At any rate, no matter which notation we
chose, the scalar product is defined by

〈v, w〉 := v · w :=
d

∑

i=1

viwi.

The scalar product is symmetric (i.e., 〈v, w〉 = 〈w, v〉) and bilinear (i.e., 〈αu +
βv, w〉 = α〈u, w〉 + β〈v, w〉 and 〈u, αv + βw〉 = α〈u, v〉 + β〈u, w〉 for vectors
u, v, w ∈ d and scalars α, β ∈ ) and nondegenerate (if v ∈ d satisfies 〈v, w〉 =
0 for all w ∈ d, then v = 0). Moreover, it is nonnegative in the sense that
〈v, v〉 ≥ 0 for all v ∈ d, and 〈v, v〉 = 0 iff v = 0. This last property implies that
we can use the scalar product to define the length of a vector,

‖v‖ :=
√

〈v, v〉, v ∈ d.

This length satisfies the following properties: For all v, w ∈ d and λ ∈ ,
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1. ‖v‖ ≥ 0, and ‖v‖ = 0 iff v = 0.

2. ‖λv‖ = |λ|‖v‖ (where “| · |” denotes absolute value).

3. Triangle Inequality. ‖v + w‖ ≤ ‖v‖ + ‖w‖.

A measure of length of vectors that satisfies these three properties is called a
norm. The norm defined as above using the scalar product is called Euclidean
norm or 2-norm. In Chapters ?? and ??, we will also study other norms on d,
and in order to distinguish the Euclidean norm, we will denote it by ‖v‖2 in
those chapters. In the other chapters, however, when no confusion can arise,
we use the simpler notation ‖ · ‖. We speak of the d-dimensional Euclidean space
when we think of d equipped with the scalar product 〈, 〉 and the induced
Euclidean norm ‖ · ‖ = ‖ · ‖2.

The third property above is called the triangle inequality because it says
that in a triangle with vertices p, q, and r, the length of any one of the sides,
say ‖q − p‖, is at most the sum of the lengths of the other two, ‖q − p‖ ≤
‖q − r‖ + ‖r − p‖, see Figure 1.1.

p
q

r

‖q − p‖

‖q − r‖
‖r − p‖
α

Figure 1.1: The triangle inequality and angles

In the case of the Euclidean norm, the triangle inequality follows from the
fundamental

Fact 1.1 (Cauchy-Schwarz Inequality).

|〈v, w〉| ≤ ‖v‖‖w‖, v, w ∈ d.

It is sometimes useful to know when equality holds in the Cauchy-Schwarz
Inequality: |〈v, w〉| = ‖v‖‖w‖ iff “v and w point in the same direction”, i.e., iff
v = λw or w = λv for some λ ≥ 0.

The Cauchy-Schwarz inequality also allows us to define the angle (more
precisely, the “smaller angle”) α between nonzero vectors v, w ∈ d by

cos(α) =
〈v, w〉
‖v‖‖w‖ .

In the case v = q − p and w = r − p ee Figure 1.1. We also frequently need the

Fact 1.2 (Cosine Theorem). For p, q, r ∈ d and α the angle between q − p and
r − p,

‖q − r‖2 = ‖r − p‖2 + ‖q − p‖2 − 2‖r − p‖‖q − p‖ cos(α).

For α = π/2 (or 90o), this is Pythagoras’ Theorem.
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1.3 Hyperplanes

A hyperplane is an affine subspace of codimension 1 of d. A hyperplane h is the
solution set of one inhomogeneous linear equation,

h = {x ∈ d : 〈a, x〉 = α}, (1.1)

where a = (a1, . . . , ad) ∈ d, a &= 0, and α ∈ . We will also use the abbreviated
notation

h = {〈a, x〉 = α}.
(Note that for a = 0, the set of solutions to the equation 〈a, x〉 = α is either all
of d, namely if α = 0, or empty.) For d = 2, hyperplanes are lines (see Figure
1.2), and for d = 3, we get planes.

The vector a is the so-called normal vector of h. It is orthogonal to the hy-
perplane in the sense that

〈a, p − q〉 = 0, for all p, q ∈ h,

a fact that immediately follows from (1.1). It is not hard to show (do it!) that
the distance of h to the origin is |α|/‖a‖, attained by the unique point α

‖a‖2 a. Ob-
serve that the hyperplane h is invariant under rescaling its defining equation,
i.e., under multiplying both a and α by the same nonzero scalar λ &= 0.

Any hyperplane defines a partition of d into three parts: the hyperplane h
itself and two open halfspaces. If h is given by an equation as in (1.1), we denote
these halfspaces by

h+ := {x ∈ d : 〈a, x〉 > α},
h− := {x ∈ d : 〈a, x〉 < α},

and call them the positive and negative open halfspace, respectively, and if we
want to stress this, we call a the outer normal vector. Observe that which of the
halfspaces is positive and which is negative is not determined by the hyper-
plane but involves an additional choice, which is sometimes called a coorienta-
tion of h. If we rescale the defining equation by a negative scalar λ < 0, then
we change the coorientation, i.e., the positive and the negative halfspace swap
their roles.

We will also work with the closed halfspaces h+ := {〈a, x〉 ≥ α} and h− :=
{〈a, x〉 ≤ α}

Origin-avoiding hyperplanes. In the following, we will adapt the conven-
tion that for hyperplanes that do not contain the origin 0, we will choose the
coorientation so that 0 ∈ h−. Note that 0 &∈ h iff α &= 0, and our convention
amounts assuming that α > 0 (which we can always achieve by rescaling, if
necessary).
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h = {x1 + 2x2 = 6}

x1

x2

h+

h−

a = (1, 2)

Figure 1.2: A hyperplane h in 2 along with its two halfspaces

Non-vertical hyperplanes. Sometimes it is convenient to distinguish one di-
rection, usually the xd-direction, as vertical. Hyperplanes h with ad &= 0 are
called non-vertical and have an alternative definition in terms of only d param-
eters: if h = {a1x1 + . . . + adxd = α} with ad &= 0, then we can rewrite the
defining equation as

xd = − 1

ad
(a1x1 + . . . + ad−1xd−1 − α) = b1x1 + . . . + bd−1xd−1 + β,

where bi = −ai/ad, 1 ≤ i ≤ d − 1, and β = −α/ad. (In other words, we can
view h as the graph of an affine map d−1 → .) In this form, the line from
Figure 1.2 has the equation

x2 = −1

2
x1 + 3.

For non-vertical hyperplanes, we adapt the convention that the coorienta-
tion is chosen in such a way that

h+ = {x ∈ d : xd >
d−1
∑

i=1

bixi − β},

h− = {x ∈ d : xd <
d−1
∑

i=1

bixi − β},

and we say that h+ is the halfspace above h, while h− is below h.
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1.4 Duality

In a sense, points and hyperplanes behave in the same way. Even if it is not
clear what exactly this means, the statement may appear surprising at first
sight. Here are two duality transforms that map points to hyperplanes and vice
versa, in such a way that relative positions of points w.r.t. hyperplanes are
preserved.

The origin-avoiding case. For p = (p1, . . . , pd) ∈ d\{0}, the origin-avoiding
hyperplane

p∗ = {x ∈ d : 〈p, x〉 = 1} (1.2)

is called the hyperplane dual to p. Vice versa, for an origin-avoiding hyperplane
h = {x ∈ d : 〈a, x〉 = α}, α &= 0, the point

h∗ =
(a1

α
, . . . ,

ad

α

)

∈ d \ {0} (1.3)

is called the point dual to h. We get (p∗)∗ = p and (h∗)∗ = h, so this duality
transform is an involution (a mapping satisfying f(f(x)) = x for all x).

It follows from the above facts about hyperplanes that p∗ is orthogonal to
p and has distance 1/‖p‖ from the origin. Thus, points close to the origin are
mapped to hyperplanes far away, and vice versa. p is actually on p∗ if and only
if ‖p‖ = 1, i.e. if p is on the so-called unit sphere, see Figure 1.3.

p
p

p p∗

p∗p∗

000

Figure 1.3: Duality in the origin-avoiding case

The important fact about the duality transform is that relative positions of
points w.r.t. hyperplanes are maintained.

Lemma 1.3. For all points p &= 0 and all origin-avoiding hyperplanes h, we have

p ∈







h+

h−

h
⇔ h∗ ∈







(p∗)+

(p∗)−

p∗

6



Proof. Really boring, but still useful in order to see what happens (or rather,
that nothing happens). Let’s look at h+, the other cases are the same.

p ∈ h+ ⇔
d

∑

i=1

aipi > α ⇔
d

∑

i=1

pi
ai

α
≥ 1 ⇔: h∗ ∈ (p∗)+.

The non-vertical case. The previous duality has two kinds of singularities:
it does not work for the point p = 0, and it does not work for hyperplanes
containing 0. The following duality has only one kind of singularity: it does
not work for vertical hyperplanes, but it works for all points.

For p = (p1, . . . , pd) ∈ d, the non-vertical hyperplane

p∗ = {x ∈ d : xd =
d−1
∑

i=1

pixi − pd} (1.4)

is called the hyperplane dual to p.1 Vice versa, given a non-vertical hyperplane
h = {xd =

∑d−1
i=1 bixi − β}, the point

h∗ = (b1, . . . , bd−1, β) (1.5)

is called the point dual to h. Here is the analogue of Lemma 1.3.

Lemma 1.4. For all points p and all non-vertical hyperplanes h, we have

p ∈







h+

h−

h
⇔ h∗ ∈







(p∗)+

(p∗)−

p∗

We leave the proof as an exercise. It turns out that this duality has a ge-
ometric interpretation involving the unit paraboloid instead of the unit sphere
[Ede87]. Which of the two duality transforms is more useful depends on the
application.

Duality allows us to translate statements about hyperplanes into statements
about points, and vice versa. Sometimes, the statement is easier to understand
after such a translation. Exercise 6 gives a nontrivial example. Here is one
very easy translation in the non-vertical case. In the origin-avoiding case, the
essence is the same, but the precise statement is slightly different (Exercise 7).

Observation 1.5. Let p, q, r be points in 2. The following statements are equivalent,
see Figure 1.4.

1We could use another symbol to distinguish this from the previous duality, but since we
never mix both dualities, it will always be clear to which one we refer.
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(i) The points p, q, r are collinear (lie on the common line %).

(ii) The lines p∗, q∗, r∗ are concurrent (go through the common point %∗, or are
parallel to each other, if % is vertical).

p

p

q

q

r

r

%

%

p∗

p∗

q∗

q∗

r∗

r∗

%∗

↔

↔

Figure 1.4: Duality: collinear points translate to concurrent lines (top) or par-
allel lines (bottom)

1.5 Convex Sets

A set K ⊆ d is called convex if for all p, q ∈ K and for all λ ∈ [0, 1], we also
have

(1 − λ)p + λq ∈ K.

Geometrically, this means that for any two points in K, the connecting line
segment is completely in K, see Figure 1.5.

p

p q
q

KK

Figure 1.5: A convex set (left) and a non-convex set (right)
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It immediately follows that the intersection of an arbitrary collection of con-
vex sets is convex. Convex sets are “nice” sets in many respects, and we often
consider the convex hull of a set.

Definition 1.6 (Convex Hull). Let X be an arbitrary subset of d. The convex
hull of X is defined as the intersection of all convex sets containing X ,

conv(X) :=
⋂

C⊇X
C convex

C.

The convex hull can also be characterized in terms of convex combinations:
If p1, . . . , pn ∈ d, a convex combination of the points is a linear combination
λ1p1 + . . . + λnpn such that all λi ≥ 0 and

∑n
i=1 λi = 1.

Lemma 1.7. Let X ⊆ d. The convex hull of X equals the set of all finite convex
combinations of points in X ,

conv(X) =

{

∑

x∈S

λxx : S ⊆ X finite,
∑

x∈S

λx = 1, and λx ≥ 0 for all x ∈ S

}

.

The proof is left as an exercise.
Of particular interest for us are convex hulls of finite point sets, see Figure

1.6 for an illustration in 2. For these, and more generally for closed sets X ,

conv(P )

Figure 1.6: The convex hull of a finite point set P ⊆ 2

the convex hull can also be characterized as the intersection of all halfspaces
containing X .

Lemma 1.8. If X ⊆ d is finite, then

conv(X) =
⋂

H⊇X
H closed halfspace

H.
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The proof of this lemma is the subject of Exercise 5. We remark that instead
of closed halfspaces, one could also take open halfspaces or all halfspaces. In
its present form, however, the lemma immediately yields the corollary that the
convex hull of a closed point set is closed, which is sometimes useful to know.

Theorem 1.9 (Separation Theorem). Let C, D ⊆ d be convex sets, C ∩ D = ∅.
Then there exists a hyperplane h = {〈a, x〉 = α} that weakly separates the two sets,
in the sense that they lie in opposite closed halfspaces, i.e., C ⊆ h+ and D ⊆ h−.

If both C and D are closed and at least one of them is bounded (hence compact),
then they can be strictly separated, i.e., h can be chosen such that C ⊆ h+ and
D ⊆ h−.

The proof of strict separability for two compact convex sets is the subject of
Exercise 4. The general case follows by a limiting argument, which we omit,
see [Mat02, Chapter 1] or [Bar02] for a proof. The generalization of the Separa-
tion Theorem to infinite-dimensional vector spaces, the Hahn-Banach Theorem,
is one of the basic theorems in functional analysis, see, for instance, [EMT04].

Another fundamental fact about convex sets is

Lemma 1.10 (Radon’s Lemma). Let S ⊆ d, |S| ≥ d + 2. Then there exist two
disjoint subsets A, B ⊆ S such that conv(A) ∩ conv(B) &= ∅.

For instance, if S = {p1, p2, p3, p4} is a set of 4 points in the plane 2, and
if we assume that no three of the points are collinear, there are exactly two
possibilities what such a Radon Partition can look like: Either the points of S
form the vertices of a convex quadrilateral, say numbered in counterclockwise
order, in which case the diagonals intersect and we can take A = {p1, p3} and
B = {p2, p4}. Or one of of the points, say p4, is contained in the convex hull of
the other three, in which case A = {p4} and B = {p1, p2, p3} (or vice versa).

Proof. By passing to a subset of S, if necessary, we may assume that S =
{p1, . . . , pd+2} is a finite set that contains exactly d + 2 points. Since the max-
imum size of an affinely independent set in d is d + 1, there is a nontrivial
affine dependence

∑d+2
i=1 αipi = 0,

∑d+2
i=1 αi = 0, not all αi = 0. We group the in-

dices according to the signs of the αi’s: P := {i : αi ≥ 0} and N := {i : αi < 0}.
Now, by bringing the terms with negative coefficients on on side, we conclude
λ :=

∑

i∈P αi =
∑

i∈N(−αi) and λ &= 0 (otherwise all αi = 0). Moreover,
∑

i∈P αipi =
∑

i∈N (−αi)pi. Now, the coefficients on both sides of the last equa-
tion are nonnegative and sum up to λ. Thus, dividing by λ, we see that the
convex hulls of A := {pi : i ∈ P} and B := {pi : i ∈ N} intersect.

A nontrivial and very important consequence of Radon’s Lemma is

Fact 1.11 (Carathéodory’s Theorem). If S ⊆ d and p ∈ conv(S), then there
exists a subset A ⊆ S, |A| ≤ d + 1, such that p ∈ conv(A).
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Again, we omit the proof and refer to [Bar02] for the details. Another very
important statement about convex sets is

Theorem 1.12 (Helly’s Theorem). Let C1, . . . , Cn ⊆ d be convex sets, n ≥ d+1.
If every d + 1 of the sets Ci have a non-empty common intersection, the common
intersection

⋂n
i=1 Ci of all sets is nonempty.

For an application, see Exercise 6.

Proof. Fix d. We proceed by induction on n. If n = d + 1, there is nothing to
prove, so we may assume n ≥ d + 2. For each index i, 1 ≤ i ≤ n, the family
of Cj’s with j &= i also satisfies the assumptions of Helly’s Theorem, so by
induction, their common intersection is nonempty, i.e., there exists some point
pi ∈

⋂

j &=i Cj &= ∅. If pk = pl for some k &= l, then pk ∈ Cj for all j &= k, and
also pk = pl ∈ Ck because k &= l, so pk ∈

⋂n
i=1 Ci as desired. Thus, we can

assume that all the points pi, 1 ≤ i ≤ n are distinct. Since there are n ≥ d + 2
of these points, by Radon’s Lemma there are disjoint subsets J and K of [n] :=
{1, . . . , n} such that conv{pj : j ∈ J} ∩ conv{pk : k ∈ K} &= ∅. Let us pick a
point q in the intersection of these two convex hulls. We claim that q ∈

⋂n
i=1 Ci.

For consider any index i. Since J and K are disjoint, i cannot belong to both of
them, say i &∈ J But this means that for all j ∈ J , pj ∈ Ci (by choice of the pj’s).
Consequently, q ∈ conv{pj : j ∈ J} ⊆ Ci. The case i &∈ K is symmetric, so we
have shown that q indeed belongs to every ci.

Remark 1.13. There is also an “infinite version” of Helly’s Theorem: If C is
an infinite family of compact convex sets in d, and if any d + 1 of the sets in C
intersect, then

⋂

C∈C C &= ∅. Recall that a subset K ⊆ d is compact iff it is closed
(if {an}n∈ ⊆ K and if a = limn→∞ an exists in d, then a ∈ K) and bounded
(i.e., there exists some constant C such that ‖x‖ ≤ C for all x ∈ K). If one of
these conditions is dropped, then the infinite version of Helly’s Theorem fails,
see Exercise 8.

1.6 Balls and Boxes

Here are basic types of convex sets in d (see also Exercise 2).

Definition 1.14. Fix d ∈ , d ≥ 1.

(i) Let a = (a1, . . . , ad) ∈ d and b = (b1, . . . , bd) be two d-tuples such that ai ≤ bi

for i = 1, . . . , d. The box Qd(a, b) is the d-fold Cartesian product

Qd(a, b) :=
d

∏

i=1

[ai, bi] ⊆ d.
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(ii) Qd := Qd(0, 1) is the unit box, see Figure 1.7 (left).

(iii) Let c ∈ d, ρ ∈ +. The ball Bd(c, ρ) is the set

Bd(c, ρ) = {x ∈ d | ‖x − c‖ ≤ ρ}.

(iv) Bd := Bd(0, 1) is the unit ball, see Figure 1.7 (right).

1

1

1

1

Q2 = Q2(0, 1) B2 = B2(0, 1)

00

Figure 1.7: The unit box (left) and the unit ball (right)

While we have a good intuition concerning balls and boxes in dimensions
2 and 3, this intuition does not capture the behavior in higher dimensions. Let
us discuss a few counterintuitive phenomena.

Diameter. The diameter of a compact2 set X ⊆ d is defined as

diam(X) = max
x,y∈X

‖x − y‖.

What can we say about the diameters of balls and boxes?

Lemma 1.15. For d ∈ , d ≥ 1,

(i) diam(Qd) =
√

d, and

(ii) diam(Bd) = 2.

Proof. This is not difficult, but it is instructive to derive it using the material
we have. For x, y ∈ Qd, we have |xi − yi| ≤ 1 for i = 1, . . . , d, from which

‖x − y‖2 = (x − y) · (x − y) =
d

∑

i=1

(xi − yi)
2 ≤ d

2a set that is closed and bounded
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follows, with equality for x = 0, y = 1. This gives (i). For (ii), we consider
x, y ∈ Bd and use the triangle inequality to obtain

‖x − y‖ ≤ ‖x − 0‖ + ‖0 − y‖ = ‖x‖ + ‖y‖ ≤ 2,

with equality for x = (1, 0, . . . , 0), y = (−1, 0, . . . , 0). This is (ii).

The counterintuitive phenomenon is that the unit box contains points which
are arbitrarily far apart, if d only gets large enough. For example, if our unit
of measurement is cm (meaning that the unit box has side length 1cm), we
find that Q10,000 has two opposite corners which are 1m apart; for Q1010 , the
diameter is already 1km.

1.7 Volume and Surface Area

We will use the notation vol (or by vold, if we want to stress the dimension)
for the d-dimensional volume or Lebesgue measure. An exact definition requires a
certain amount of measure and integration theory, which we will not discuss
here. In particular, we will not discuss the issue of non-measurable sets, but
adopt the convention that whenever we speak of the volume of a set A, it will
be implicitly assumed that A is measurable. A few key properties that the
d-dimensional volume enjoys are the following:

1. The volume of a d-dimensional box equals vold(Qd(a, b)) =
∏d

i=1(bi − ai).
In particular, vold(Qd) = 1.

2. Volume is translation-invariant, i.e., vol(A) = vol(A + x) for all x ∈ d.

3. Volume is invariant under orthogonal maps (rotations and reflections.
More generally, if T : d → d is a linear transformation, then vold(T (A)) =
| detT | vol(A).

Volume is also closely related to integration. If one prefers the latter as a
primitive notion, one can also consider the equation

vol(X) =

∫

d

1X(x)dx,

as a definition of the volume of a bounded (and measurable) subset X ⊂ d,
where 1X is the characteristic function of X ,

1X(x) =

{

1, if x ∈ X,
0, otherwise.
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The Unit Sphere and Surface Area. The boundary of the unit ball Bd in d,
i.e., the set of all vectors of (Euclidean) norm 1, is the unit sphere

d−1 = {u ∈ d : ‖u‖2 = 1}.

We will also need the notion of (d−1)-dimensional surface area for (measurable)
subsets E ⊆ d−1. If one takes the notion of volume as given, one can define
the surface area σ = σd−1 by

σd−1(E) :=
1

d
vold(cone(E, 0)),

where cone(E, 0) := {tx : 0 ≤ t ≤ 1, x ∈ E}.
In particular, we note the following facts about the volume of the unit ball

and the surface area of the unit sphere:

Fact 1.16. Let d ∈ , d ≥ 1.

(i) vold(Bd) = πd/2

(d/2)! .

(ii) σd−1( d−1) = 2πd/2

(d/2−1)! .

Here, for a real number α > −1, the generalized factorial α! (also often called
the Gamma Function Γ(α + 1)) is defined by α! :=

∫ ∞

0 tαe−tdt. This function
obeys the familiar law (α + 1)! = (α + 1)α!. In particular, it coincides with the
usual recursively defined factorial for integers, and for half-integers we have

(d/2)! =
√

π
(d−1)/2
∏

m=0

(

m +
1

2

)

, for odd d.

We recall the following important approximation:

Fact 1.17 (Stirling’s Formula). α! ∼ αα

eα

√
2πα as α → ∞ (where f ∼ g means

f/g → 1).

We skip the proofs of Lemma 1.16 and of Stirling’s formula, because they
take us too far into measure-theoretic and analytic territory; here is just a
sketch of a possible approach for Part (i) of the lemma: Cavalieri’s principle
says that the volume of a compact set in d can be calculated by integrating
over the (d − 1)-dimensional volumes of its slices, obtained by cutting the set
orthogonal to some fixed direction. In case of a ball, these slices are balls again,
so we can use induction to reduce the problem in d to the problem in d−1.

Let us discuss the counterintuitive implication of Lemma 1.16. The intu-
ition tells us that the unit ball is larger than the unit box, and for d = 2, Figure
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1.7 clearly confirms this. B2 is larger than Q2 by a factor of π (the volume of
B2). You might recall (or derive from the lemma) that

vol(B3) =
4

3
π,

meaning that B3 is larger than Q3 by a factor of more than four. Next we get

vol(B4) ≈ 4.93, vol(B5) ≈ 5.26,

so vol(Bd)/ vol(Qd) seems to grow with d. Calculating

vol(B6) ≈ 5.17

makes us sceptical, though, and once we get to

vol(B13) ≈ 0.91,

we have to admit that the unit ball in dimension 13 is in fact smaller than the
unit box. From this point on, the ball volume rapidly decreases (Table 1.1, see
also Figure 1.8), and in the limit, it even vanishes:

lim
d→∞

vol(Bd) = 0,

because Γ(d/2 + 1) grows faster than πd/2.

d 13 14 15 16 17 · · · 20
vol(Bd) 0.91 0.6 0.38 0.24 0.14 · · · 0.026

Table 1.1: Unit ball volumes

1.8 Exercises

Exercise 1. Prove that if P ⊂ d is an affinely independent point set with |P | = d,
then there exists a unique hyperplane containing all points in P . (This generalizes the
statement that there is a unique line through any two distinct points.)

Exercise 2. Prove that all boxes Qd(a, b) and all balls B(c, ρ) are convex sets.

Exercise 3. (a) Show that if C is an arbitrary collection of convex sets in d, then
⋂

C∈C C is again a convex set.

(b) Prove Lemma 1.7.

Exercise 4. Let C, D be nonempty compact convex sets in d, C ∩ D = ∅.

15
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Figure 1.8: Plots of vold(Bd) (on the left) and of vold(Bd)/ vold(Qd(−1, 1)) (on
the right), for d = 1, . . . , 20.

(a) Show that there exist points p ∈ C and q ∈ D such that, for all x ∈ C and all
y ∈ D, ‖p − q‖ ≤ ‖x − y‖. (Hint: You may use the fact that C × D is also
compact; which theorems about continuous functions on compact sets do you
remember from analysis?)

(b) Let h be the hyperplane with normal vector p− q and passing through the point
m := (p + q)/2 (the midpoint of the segment pq; what is the equation of this
hyperplane?). Show that h separates C and D, i.e., that C ⊆ h+ and D ⊆
h−. (We could let the hyperplane pass through any point in the interior of the
segment pq instead of the midpoint and the statement would still be true.)

Exercise 5. Prove Lemma 1.8. Can you give a counterexample if X is not closed?

Hint. If p &∈ conv X , argue first that dist(p, X) := inf{‖x − p‖ : x ∈ X} > 0.
Then use the Separation Theorem to obtain a weakly separating hyperplane,
and argue by induction on the dimension.

Exercise 6. Let S be a set of vertical line segments3 in 2, see Figure 1.9. Prove
the following statement: if for every three of the line segments, there is a line that
intersects all three segments, then there is a line that intersects all segments.

Can you give a counterexample in the case of non-vertical segments?

Hint. Use the duality transform (non-vertical case) and Helly’s Theorem.
For this, you need to understand the following: (i) what is the set of lines dual
to the set of points on a (vertical) segment? (ii) if a line intersects the segment,
what can we say about the point dual to this line?

3a line segment is the convex hull of a set of two points
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Figure 1.9: A set of vertical line segments in 2

Exercise 7. State and prove the analogue to Observation 1.5 for the origin-avoiding
case.

Exercise 8. Show that without the additional compactness assumption, the infinite
version of Helly’s Theorem is generally not true. That is, give an example, for some
dimension d of your choice, of an infinite family C of (noncompact) convex sets such
that

(i) any d + 1 of the sets in C have a nonempty intersection,

(ii) but
⋂

C∈C C = ∅.

Exercise 9. In order to generate a random point p in Bd, we could proceed as follows:
first generate a random point p in Qd(−1, 1) (this is easy, because it can be done
coordinatewise); if p ∈ Bd, we are done, and if not, we repeat the choice of p until
p ∈ Bd holds. Explain why this is not necessarily a good idea. For d = 20, what is the
expected number of trials necessary before the event ’p ∈ Bd’ happens?
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