
RECAP — How to find a maximum matching?

First characterize maximum matchings

A maximal matching cannot be enlarged by adding
another edge.

A maximum matching of G is one of maximum size.

Example. Maximum 6= Maximal

Let M be a matching. A path that alternates between
edges in M and edges not in M is called an M -
alternating path.
An M -alternating path whose endpoints are unsatu-
rated by M is called an M -augmenting path.

Theorem(Berge, 1957) A matching M is a maximum
matching of graph G iff G has no M -augmenting path.

1

RECAP — Combinatorial approach

Augmenting Path Algorithm

Input graph G on n vertices
Output matching M ⊆ E(G) of maximum size

M := ∅
WHILE there exists an M -augmenting path P

augment M along P

output M

Problem: How to find an augmenting path fast?

Easier in bipartite graphs:

Naive approach: O(mn)

Hopcroft-Karp: O(m
√

n)

Tougher for general graphs:

Edmonds’ Blossom Algorithm∗ (1965): O(n2m)

∗In his paper “Paths, Trees, and Flowers” Edmonds defined the
notion of polynomial time algorithm

2

History of maximum matching algorithms

Authors Year Order of Running Time
Edmonds 1965 n2m

Even-Kariv 1975 min{√nm logn, n2.5}
Micali-Vazirani 1980

√
nm

Rabin-Vazirani 1989 nω+1

Mucha-Sankowski 2004 nω

Harvey 2006 nω

ω := inf{c : two n × n matrices can be
multiplied in time O(nc)}

“time” is actually the number of arithmetic operations
The determinant, the inverse, or a submatrix of maxi-
mum rank of an n×n matrix can also be found in time
O(nω).

Clear: ω ≥ 2

Naive algorithm: ω ≤ 3

Theorem (Coppersmith-Winograd, 1990) ω < 2.38

3

RECAP — Algebraic approach

First question: Is there a perfect matching in G?

First let G be bipartite
with parts U = {u1, . . . , un}, W = {w1, . . . , wn}.

Let B be the southwest n × n submatrix of the adja-
cency matrix of G:

bij :=

{

1 if uiwj ∈ E(G)

0 otherwise

The permanent of B is

perB :=
∑

π∈Sn

b1,π(1)b2,π(2) · · · bn,π(n)

Claim M has a perfect matching iff per(B) 6= 0

Problem: permanent is hard to compute

4

Determinant is similar and easy to compute

detB :=
∑

π∈Sn

(−1)sgn(π)b1,π(1)b2,π(2) · · · bn,π(n)

Problem: det(B) could be 0 even if per(B) 6= 0.

Solution: Introduce one variable xij for each edge
uiwj ∈ G, ui ∈ U , wj ∈ W and define a matrix A:

aij :=

{

xij if uiwj ∈ E(G)

0 otherwise

Claim M has a perfect matching iff det(A) 6≡ 0

Problem: Exponentially many terms.

Solution: Substitution and then determinant calculati-
on takes only O(nω).

How to ensure that “nonzero-ness” is preserved?
Choose a prime p, 2n ≤ p ≤ 4n, work over Fp.
Substitute randomly (Schwartz-Zippel Lemma)

Claim det(A) 6≡ 0 ⇒ Prob[det(A) 6= 0] > 1
2

RECAP — Schwartz-Zippel Lemma

Let q(x1, . . . , xn) ∈ F[x1, . . . , xn] be nonzero poly-
nomial of degree d ≥ 0, and let S ⊆ F be a finite set.
Then the number of n-tuples (r1, . . . , rn) ∈ Sn with
q(r1, . . . , rn) = 0 is at most d|S|n−1. In particular, if
r1, . . . , rn ∈ S is chosen independently and uniformly
at random, then

Pr[q(r1, . . . , rn) = 0] ≤ d

|S|

General remark: Correctness proofs proceed in
Z(x1, . . . , xn) arithmetic.

Randomization proofs, i.e., that the probability of an
incorrect answer is small, depends on selecting a lar-
ge enough prime p to substitute randomly over Fp.
If the algorithm performs t zero-tests of polynomials
of degree at most d, then selecting p ≥ 2td gives that
the success probability is at least 1

2.
In the previous perfect matching test algorithm for bi-
partite graphs there was t = 1 zero-test of a polyno-
mial of degree n (the determinant).

5

RECAP — Algebraic approach

Let now G = (V, E) be an arbitrary graph.

Define the Tutte matrix T (G) = T of G

tij :=











xij if vivj ∈ E(G) snd i < j
−xij if vivj ∈ E(G) snd i > j
0 otherwise

Theorem (Tutte)
G has a perfect matching iff det(T) 6≡ 0

Then again: random substitution and evaluation of the
determinant gives a randomized algorithm to check
whether G has a perfect matching.

6

How to find a perfect matching?

A first try

Input graph G containing a perfect matching
Output perfect matching M ⊆ E(G)

E(G) = {e1, . . . , em}
M := G, i := 0

WHILE i < m DO i := i + 1

IF detT (M − ei) 6= 0 THEN M := M − ei

output M

Running time: O(mnω)

7

Rabin-Vazirani

Edge e ∈ G is allowed if it is contained in a perfect
matching.

Let N = T−1 be the inverse Tutte matrix.

Lemma (Rabin-Vazirani)
Assume that G has a perfect matching.
Then edge e = ij ∈ E(G) is allowed ⇔ Ni,j 6= 0

Proof. e = ij is allowed ⇔ G − {i, j} has a perfect
matching ⇔ detTdel({i,j},{i,j}) 6= 0 By Fact 1 and
Fact 0, we have

detTdel({i,j},{i,j}) = ±detT · detN{i,j},{i,j}
= ±detT · (Ni,j)

2

8

Definitions and Facts from Linear Algebra

n × n matrix M ; S ⊆ [n]

submatrix containing rows and colums of S: M [S]

ith column (row) denoted by M∗,i (Mi,∗)
when colum set S and row set T is deleted: Mdel(S,T)

M is non-singular if detM 6= 0.

The inverse M−1 of M is given by

(M−1)i,j = (−1)i+j ·
detMdel(j,i)

detM
.

M is skew-symmetric if M = −MT .

Remark M is skew-symmetric ⇒ M is square, all dia-
gonal entries are 0.

Fact 0. M is skew-symmetric, non-singular
⇒ M−1 is skew-symmetric

9

One more fact from Linear Algebra

Let M =

(

W X
Y Z

)

, where Z is square

If M is non-singular, let M−1 =

(

Ŵ X̂
Ŷ Ẑ

)

Fact 1. (Jacobi’s Determinant Identity)

detZ = ±detM · det Ŵ .

Proof of Fact 1.
(

W X
Y Z

)

·
(

Ŵ 0
Ŷ I

)

=

(

I X
0 Z

)

10

The Algorithm

Rabin-Vazirani Algorithm

Input graph G containing a perfect matching
Output perfect matching M ⊆ E(G)

H := G, M := ∅
WHILE |M | < n/2 DO

compute H−1

find ij ∈ E(H) with
(

H−1
)

i,j
6= 0

M := M ∪ {ij}
H := H − {i, j}

output M

Running time: O(nω+1)

Question: Do we really have to calculate the inverse
always from scratch?

11

Rank-1 update

M n × n matrix
u, v ∈ F

n (column) vectors
c ∈ F scalar

Then M̃ = M + cuvT is a rank-1 update of M .

Fact 3. W is non-singular ⇔ Ẑ is nonsingular. Also,

W−1 = Ŵ − X̂Ẑ−1Ŷ

Proof. First part follows from Fact 1.

(

(W − XZ−1Y)−1 0

Z−1Y (W − XZ−1Y)−1 I

)

=

(

Ŵ X̂
Ŷ Ẑ

)

·
(

I 0
0 Z

)

·
(

I X
0 I

)

=

(

Ŵ ŴX + X̂Z
Ŷ Ŷ X + ẐZ

)

12

Speed-up via rank-1 updates

Rabin-Vazirani Algorithm with rank 1-updates
(Mucha-Sankowski)

Input graph G containing a perfect matching
Output perfect matching M ⊆ E(G)

M := ∅
compute N = T−1

WHILE |M | < n/2 DO

find ij ∈ E(G) with Ni,j 6= 0

M := M ∪ {ij}
N := N − 1

Ni,j
N∗,jNi,∗ + 1

Ni,j
N∗,iNj,∗

output M

Correctness: After an update of N :
1. in the ithe and jth columns all entries are 0.
2. By Fact 3, N [V \ V (M)] is the inverse of the Tutte
matrix of G − V (M).

Running time: O(n3)

13

Harvey’s divide-and-conquer implementation

FindPerfectMatching(G)
Input graph G containing a perfect matching
Output perfect matching M ⊆ E(G)

compute N = T−1

output BuildMatching(V (G), N)

BuildMatching(S, N, α)
Input subset S ⊆ V (G); integer α;

matrix N with N [S] up-to-date;
Output perfect matching M ⊆ E(G)

M := ∅
IF |S| > 2 THEN

partition S = S1 ∪ · · · ∪ Sα, |S1| = · · · = |Sα|
FOR each 1 ≤ a < b ≤ α DO

BuildMatching(Sa ∪ Sb, N, α)

Update N
ELSE (|S| = 2)

IF Ti,j 6= 0 and Ni,j 6= 0 THEN

M := M ∪ {ij}
Update N

output M

14

Correctness and Recursion

Correctness: implementation of Rabin-Vazirani; every
edge is considered at least once

h(s): running time of BuildMatching for |S| = s

Assuming that the “Update” lines can be performed in
time O(sω) for a subproblem of size |S| = s, we have
the recursion

h(s) ≤
(α

2

)

h

(

s

α/2

)

+ O

(

(α

2

)

sω
)

h(n) = O(nω) provided logα/2

(

α
2

)

< ω

For ω = 2.38, α = 13 will do

15

Efficient updates

A little bit technical...

Idea: At the end of each recursive subproblem do not
update the full matrix, only the part belonging to the
parent subproblem

It turns out: for a subproblem of size s, this can be
done with a constant number of matrix multiplications
and inversions of O(s) × O(s) matrices

Remark: How to generalize all these algorithms fin-
ding a perfect matching to find a maximum matching?
First, in time O(nω) find a maximum rank submatrix of
T . For a skew-symmetric matrix this could be chosen
to be a principal submatrix. Then find a perfect mat-
ching in the subgraph corresponding to this full rank
principal submatrix.

16

