RECAP — How to find a maximum matching?

First characterize maximum matchings

A maximal matching cannot be enlarged by adding
another edge.

A maximum matching of GG is one of maximum size.

Example. Maximum #= Maximal

Let M be a matching. A path that alternates between
edges in M and edges not in M is called an M-
alternating path.

An M -alternating path whose endpoints are unsatu-
rated by M is called an M- path.

Theorem(Berge, 1957) A matching M is a maximum
matching of graph G iff G has no M-augmenting path.

RECAP — Combinatorial approach

Augmenting Path Algorithm

Input graph G on n vertices
Output matching M C E(G) of maximum size

M =10

WHILE there exists an M-augmenting path P
augment M along P

output M

Problem: How to find an augmenting path fast?

Easier in bipartite graphs:

Naive approach: O(mn)
Hopcroft-Karp: O(m+/n)

Tougher for general graphs:
Edmonds’ Blossom Algorithm* (1965): O(n2m)

*In his paper “Paths, Trees, and Flowers” Edmonds defined the
notion of polynomial time algorithm

History of maximum matching algorithms____

Authors Year Order of Running Time
Edmonds 1965 n2m
Even-Kariv 1975 | min{y/nmlogn,n?>}
Micali-Vazirani 1980 vnm
Rabin-Vazirani 1989 nwt1l
Mucha-Sankowski | 2004 nv
Harvey 2006 n%
w = inf{c : two n X n matrices can be

multiplied in time O(n°)}
“time” is actually the number of arithmetic operations
The determinant, the inverse, or a submatrix of maxi-
mum rank of an n x n matrix can also be found in time
O(n»).

Clear: w > 2
Naive algorithm: w < 3

Theorem (Coppersmith-Winograd, 1990) w < 2.38
3

RECAP — Algebraic approach

First question: Is there a perfect matching in G?

First let G be bipartite
with parts U = {u1,...,un}, W = {wq,...,wn}.

Let B be the southwest n x n submatrix of the adja-
cency matrix of G-

[1 ifuw; e B(G)
Y] 0 otherwise

The permanent of B is

perB =) by r1)b2.r(2) " Onnn)

Claim M has a perfect matching iff per(B) #= 0O

Problem: permanent is hard to compute

Determinant is similar and easy to compute

detB:= Y (—1)Sgn(”)bl,w(1)bz,w(2)"'bn,vr(n)
TESH

Problem: det(B) could be 0 even if per(B) # 0.

Solution: Introduce one variable z;; for each edge
ww; € G, u; € U, w; € W and define a matrix A:

0 = T If U W; € E(G)
e O otherwise

Claim M has a perfect matching iff det(A) £ 0
Problem: Exponentially many terms.

Solution: Substitution and then determinant calculati-
on takes only O(n%).

How to ensure that “nonzero-ness” is preserved?
Choose a prime p, 2n < p < 4n, work over [,
Substitute randomly (Schwartz-Zippel Lemma)

Claim det(A) #0 = Prob[det(A) # 0] > %

RECAP — Schwartz-Zippel Lemma

Let g(z1,...,2n) € Flz1,...,2n] be nonzero poly-
nomial of degree d > 0O, and let S C IF be a finite set.
Then the number of n-tuples (r1,...,rn) € S™ with
q(r1,...,rn) = Ois at most d|S|”~ L. In particular, if
ri1,...,rn € Sis chosen independently and uniformly
at random, then

d
P e =0 < —
r[CI(Tl Tn)] |S|

General remark: Correctness proofs proceed in
Z(x1,...,xn) arithmetic.

Randomization proofs, i.e., that the probability of an
iIncorrect answer is small, depends on selecting a lar-
ge enough prime p to substitute randomly over [,

If the algorithm performs ¢ zero-tests of polynomials
of degree at most d, then selecting p > 2td gives that
the success probability is at least 3.

In the previous perfect matching test algorithm for bi-
partite graphs there was ¢t = 1 zero-test of a polyno-
mial of degree n (the determinant).

RECAP — Algebraic approach

Let now G = (V, E) be an arbitrary graph.

Define the Tutte matrix T'(G) = T of G
Tij If Vv € E(G)sndi < j

tij == —T4j If ViV € E(G)sndi > j
0 otherwise

Theorem (Tutte)
G has a perfect matching iff det (7)) £ 0

Then again: random substitution and evaluation of the
determinant gives a randomized algorithm to check
whether G has a perfect matching.

How to find a perfect matching?

A first try

Input graph GG containing a perfect matching
Output perfect matching M C E(G)

E(G) ={e1,...,em}
M:=G,1:=0
WHILE? < m DO =141
IFdetT (M —e;) ZOTHEN M = M — ¢;
output M

Running time: O(mn®)

Rabin-Vazirani

Edge e € G is allowed if it is contained in a perfect
matching.

Let N = T be the inverse Tutte matrix.

Lemma (Rabin-Vazirani)
Assume that G has a perfect matching.
Then edge e = iy € E(G) is allowed < N; ; = O

Proof. e = ij is allowed < G — {4, j} has a perfect
matching < det Ty ;. 51.45,53) 7 O By Fact 1 and
Fact O, we have

detTyei({ig}.{ijy) = TdetT -detNg ;v 6 5y
4+ det T - (Ni,j)2

Definitions and Facts from Linear Algebra___

n X n matrix M; S C [n]

submatrix containing rows and colums of S: M [S]
ith column (row) denoted by M., ; (M;)
when colum set .S and row set 7" is deleted: M ;.; (s 1)

M is non-singular if det M # 0.

The inverse M —1 of M is given by

(M~ = (1)1 ‘

M is skew-symmetric if M = — M1

Remark M is skew-symmetric = M is square, all dia-
gonal entries are 0.

Fact 0. M is skew-symmetric, non-singular
= M1 is skew-symmetric

One more fact from Linear Algebra

4%

LetM=<Y 7

>, where Z is square

If M is non-singular, let M ~1 = (‘g,/

N
~_—

Fact 1. (Jacobi’'s Determinant Identity)

det Z = + det M - det W.

Proof of Fact 1.

(¥ 5)(F9)-(23)

10

The Algorithm

Rabin-Vazirani Algorithm

Input graph G containing a perfect matching
Output perfect matching M C E(G)

H:=G M:=0

WHILE |M| < n/2 DO
compute H—1
find ij € E(H) with (H‘l)ij £ 0
M = MU {ij} |
H:=H-—{i,j}

output M

Running time: O(n¥11)

Question: Do we really have to calculate the inverse
always from scratch?

11

Rank-1 update
M n X n matrix
u, v € " (column) vectors
c € [F scalar

Then M = M + cuv?l is a rank-1 update of M.

Fact 3. W is non-singular < Z is nonsingular. Also,

N

W l=w_-X

Proof. First part follows from Fact 1.

(W —-XxXz"1y)-1 0
Z-ly(w —xz-1y)-1 |

X I 0 I X
Z] \oz]) \o I
- VX +XZ
— YX+ 27

<D <

12

Speed-up via rank-1 updates

Rabin-Vazirani Algorithm with rank 1-updates
(Mucha-Sankowski)

Input graph GG containing a perfect matching
Output perfect matching M C E(G)

M =
compute N =71
WHILE |M| < n/2 DO
find ij € E(G) with N; ; 7 O
M = M U {ij}
N:=N—ﬁ’jN*,jN *+N1 Ny iNj.
output M

Correctness: After an update of V:

1. in the 7the and jth columns all entries are O.

2. By Fact 3, N[V \ V(M)] is the inverse of the Tutte
matrix of G — V. (M).

Running time: O(n3)

13

Harvey’s divide-and-conguer implementation

FindPerfectMatching(G)
Input graph GG containing a perfect matching

Output perfect matching M C E(G)

compute N = 71
output Bui | dvat chi ng(V(G), N)

BuildMatching(S, N, «)

Input subset S C V(G); integer «;
matrix N with N[S] up-to-date;

Output perfect matching M C E(G)

M =10
IF |.S| > 2 THEN
partition S = Sq{ U --- U Sq, |S1]| = - = |54/
FOReach 1l <a < b < aDO
Bui | dMat chi ng(Sq U Sy, NV,)
Update N
ELSE (|.S| = 2)
IFT; ; 7 0and N; ; 7 O THEN
M = M U {ij}
Update N
output M

14

Correctness and Recursion

Correctness: implementation of Rabin-Vazirani; every
edge Is considered at least once

h(s): running time of Bui | dMat chi ng for |S| = s
Assuming that the “Update” lines can be performed in

time O(s¥) for a subproblem of size | S| = s, we have
the recursion

h(s) < (g‘)h (%/2) +0 ((Z)SW>

h(n) = O(n%*) provided 109,20 @‘) <w

Forw = 2.38, a = 13 will do

15

Efficient updates
A little bit technical...

Idea: At the end of each recursive subproblem do not
update the full matrix, only the part belonging to the
parent subproblem

It turns out: for a subproblem of size s, this can be
done with a constant number of matrix multiplications
and inversions of O(s) x O(s) matrices

Remark: How to generalize all these algorithms fin-
ding a perfect matching to find a maximum matching?
First, in time O(n*) find a maximum rank submatrix of
T. For a skew-symmetric matrix this could be chosen
to be a principal submatrix. Then find a perfect mat-
ching in the subgraph corresponding to this full rank
principal submatrix.

16

