Menger's Theorem for directed graphs_____

Given $x, y \in V(D)$, a set $S \subseteq V(D) \setminus \{x, y\}$ is an x, y-separator (or an x, y-cut) if D - S has no x, y-path.

Define

$$\kappa_D(x,y) := \min\{|S| : S \text{ is an } x,y\text{-cut,}\} \text{ and }$$

 $\lambda_D(x,y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.i.d. } x,y\text{-paths}\}$

Directed-Local-Vertex-Menger Theorem Let $x, y \in V(D)$, such that $\vec{xy} \notin E(D)$. Then

$$\kappa_D(x,y) = \lambda_D(x,y).$$

Proof. (Aharoni) Let $A = N^+(x)$ and $B = N^-(y)$.

$$D' := D - \{x, y\} - \{\vec{za} : a \in A, z \in V(D)\} - \{\vec{bz} : b \in B, z \in V(D)\}$$

 \mathcal{D} : family of all A, B-paths in D'.

GOAL: Find a family $\mathcal{P} \subseteq \mathcal{D}$ of pairwise disjoint A, B-paths and a subset $S \subseteq V(D')$ such that $|S \cap V(P)| \geq 1$ for every $P \in \mathcal{D}$ and $|S \cap V(P)| = 1$ for every $P \in \mathcal{P}$.

Proving the GOAL is indeed enough. (Think it over)

Proof of GOAL. Define an auxiliary bipartite graph H.

$$V(H) := \{v^-, v^+ : v \in V(D')\}$$

$$E(H) := \{u^+v^- : uv \in E(D')\} \cup \{v^-v^+ : v \in V(D') \setminus A \setminus B\}$$

By König's Theorem there is a matching M and a vertex-cover C in H, such that $|e \cap C| = 1$ for every $e \in M$.

$$\mathcal{P} := \{ x_1 \cdots x_k \in \mathcal{D} : x_i^+ x_{i+1}^- \in M \text{ for } 1 \le i < k \}.$$

$$S := \{ v \in V(D') : v^+, v^- \in C \text{ or } v^+ \in A^+ \cap C \text{ or } v^- \in B^- \cap C \}.$$

- Any two paths $P_1, P_2 \in \mathcal{P}$ are disjoint.
 - $V(P_1) \cap V(P_2) \neq \emptyset$ implies there is $f_1 \in E(P_1)$, $f_2 \in E(P_2)$ such that $f_1 \neq f_2$ and $f_1 \cap f_2 \neq \emptyset$. $P_1, P_2 \in \mathcal{P}$ implies that for any $f_i \in E(P_i)$ either $f_1 = f_2$ or $f_1 \cap f_2 = \emptyset$.
- Any A, B-path $x_0x_1x_2\cdots x_k$ contains a vertex from S.

Let i be the largest index such that $x_i^- \in C$. (There is such, unless $x_0^+ \in C$ and i < k unless $x_k^- \in C$)

Then $x_i^+ \in C$ since $x_i^+ x_{i+1}^-$ must be covered.

• No A, B-path $u_0u_1u_2\cdots u_k=P\in \mathcal{P}$ contains more than one vertices from S.

Suppose P does contain more. Let u_i and $u_j \in S \cap V(P)$ such that $u_k \notin S$ for i < k < j. Then $u_i^+, u_j^- \in C$ by definition of S. Let k be the largest index, i < k < j, such that $u_k^+ \in C$. Then $u_{k+1}^- \in C$ to cover the edge $u_{k+1}^- u_{k+1}^+$. Hence edge $u_k^+ u_{k+1}^- \in M$ is covered twice by C, a contradiction.

Corollaries_____

Corollary (Directed-Global-Vertex-Menger Theorem) A digraph D is strongly k-connected iff for any two vertices $x, y \in V(D)$ there exist k p.i.d. x, y-paths.

Proof: Lemma. For every $e \in E(D)$, $\kappa_D(G-e) \ge \kappa_D(G)-1$.

The proof of the very first, the original Menger Theorem (the Undirected-Local-Vertex version) is

HOMEWORK !!!

Derive implication DLVM ⇒ ULVM

Directed Edge-Menger_____

Given $x, y \in V(D)$, a set $F \subseteq E(D)$ is an x, y-disconnecting set if D - F has no x, y-path. Define

$$\kappa'_D(x,y) := \min\{|F| : F \text{ is an } x,y\text{-disconnecting set,}\}$$

 $\lambda'_D(x,y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.e.d.* } x,y\text{-paths}\}$

Directed-Local-Edge-Menger Theorem For all $x, y \in V(D)$,

$$\kappa'_D(x,y) = \lambda'_D(x,y).$$

Proof. Create directed line graph and apply DLVM.

Corollary (Directed-Global-Edge-Menger Theorem) Directed multigraph D is strongly k-edge-connected iff there is a set of k p.e.d.x, y-paths for any two vertices x and y.

^{*} p.e.d. means pairwise edge-disjoint