
Chapter 8

Voronoi Diagrams

8.1 Post O�ce Problem

Suppose there are n post o�ces p1, . . .pn in a city. Someone who is located at a position
q within the city would like to know which post o�ce is closest to him. Modeling the
city as a planar region, we think of p1, . . .pn and q as points in the plane. Denote the
set of post o�ces by P = {p1, . . .pn}.

Figure 8.1: Closest post o�ces for various query points.

While the locations of post o�ces are known and do not change so frequently, we do
not know in advance for which�possibly many�query locations the closest post o�ce
is to be found. Therefore, our long term goal is to come up with a data structure on
top of P that allows to answer any possible query e�ciently. The basic idea is to apply
a so-called locus approach : we partition the query space into regions on which is the
answer is the same. In our case, this amounts to partition the plane into regions such
that for all points within a region the same point from P is closest (among all points
from P).

As a warmup, consider the problem for two post o�ces pi, pj ∈ P. For which query
locations is the answer pi rather than pj? This region is bounded by the bisector of pi

and pj, that is, the set of points which have the same distance to both points.
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Proposition 8.1 For any two distinct points in Rd the bisector is a hyperplane, that
is, in R2 it is a line.

Proof. Let p = (p1, . . . ,pd) and q = (q1, . . . ,qd) be two points in Rd. The bisector of
p and q consists of those points x = (x1, . . . , xd) for which

||p− x|| = ||q− x|| ⇐⇒ ||p− x||
2

= ||q− x||
2 ⇐⇒ ||p||

2
− ||q||

2
= 2(p− q)>x .

As p and q are distinct, this is the equation of a hyperplane. �

pi

pj

H(pi, pj)

Figure 8.2: The bisector of two points.

Denote by H(pi, pj) the closed halfspace bounded by the bisector of pi and pj that
contains pi. In R

2, the region H(pi, pj) is a halfplane; see Figure 8.2.

Exercise 8.2

a) What is the bisector of a line ` and a point p ∈ R2 \ `, that is, the set of all
points x ∈ R2 with ||x− p|| = ||x− `|| (= minq∈` ||x− q||)?

b) For two points p 6= q ∈ R2, what is the region that contains all points whose
distance to p is exactly twice their distance to q?

8.2 Voronoi Diagram

In the following we work with a set P = {p1, . . . , pn} of points in R2.

De�nition 8.3 (Voronoi cell) For pi ∈ P denote the Voronoi cell VP(i) of pi by

VP(i) :=
{
q ∈ R2 | ||q− pi|| 6 ||q− p|| for all p ∈ P

}
.

Proposition 8.4

VP(i) =
⋂
j6=i

H(pi, pj) .
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Geometry: C&A 2014 8.2. Voronoi Diagram

Proof. For j 6= i we have ||q− pi|| 6 ||q− pj|| ⇐⇒ q ∈ H(pi, pj). �

Corollary 8.5 VP(i) is non-empty and convex.

Proof. According to Proposition 8.4, the region VP(i) is the intersection of a �nite
number of halfplanes and hence convex. As pi ∈ VP(i), we have VP(i) 6= ∅. �

Observe that every point of the plane lies in some Voronoi cell but no point lies in the
interior of two Voronoi cells. Therefore these cells form a subdivision of the plane (a
partition1 into interior-disjoint simple polygons). See Figure 8.3 for an example.

De�nition 8.6 (Voronoi Diagram) The Voronoi Diagram VD(P) of a set P = {p1, . . . , pn} of
points in R2 is the subdivision of the plane induced by the Voronoi cells VP(i), for
i = 1, . . . , n. Denote by VV(P) the set of vertices, by VE(P) the set of edges, and
by VR(P) the set of regions (faces) of VD(P).

Figure 8.3: Example: The Voronoi diagram of a point set.

Lemma 8.7 For every vertex v ∈ VV(P) the following statements hold.

a) v is the common intersection of at least three edges from VE(P);

b) v is incident to at least three regions from VR(P);

c) v is the center of a circle C(v) through at least three points from P such that

d) C(v)
◦ ∩ P = ∅.

Proof. Consider a vertex v ∈ VV(P). As all Voronoi cells are convex, k > 3 of them
must be incident to v. This proves Part a) and b).

1Strictly speaking, to obtain a partition, we treat the shared boundaries of the polygons as separate

entities.
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. . .

Without loss of generality let these cells be VP(i), for
1 6 i 6 k. Denote by ei, 1 6 i 6 k, the edge incident to v
that bounds VP(i) and VP((imodk) + 1).

For any i = 1, . . . ,k we have v ∈ ei ⇒ ||v − pi|| = ||v −

p(imodk)+1||. In other words, p1, p2, . . . , pk are cocircular,
which proves Part c).

Part d): Suppose there exists a point p` ∈ C(v)
◦. Then

the vertex v is closer to p` than it is to any of p1, . . . ,pk,
in contradiction to the fact that v is contained in all of
VP(1), . . . , VP(k). �

Corollary 8.8 If P is in general position (no four points from P are cocircular), then
for every vertex v ∈ VV(P) the following statements hold.

a) v is the common intersection of exactly three edges from VE(P);

b) v is incident to exactly three regions from VR(P);

c) v is the center of a circle C(v) through exactly three points from P such that

d) C(v)
◦ ∩ P = ∅. �

Lemma 8.9 There is an unbounded Voronoi edge bounding VP(i) and VP(j) ⇐⇒
pipj ∩P = {pi,pj} and pipj ⊆ ∂conv(P), where the latter denotes the boundary of the
convex hull of P.

Proof.

pi pj

ρ

H

r0

r

bi,j

C

D

Denote by bi,j the bisector of pi and pj, and let D

denote the family of disks centered at some point
on bi,j and passing through pi (and pj). There
is an unbounded Voronoi edge bounding VP(i)

and VP(j) ⇐⇒ there is a ray ρ ⊂ bi,j such that
||r−pk|| > ||r−pi|| (= ||r−pj||), for every r ∈ ρ and
every pk ∈ P with k /∈ {i, j}. Equivalently, there
is a ray ρ ⊂ bi,j such that for every point r ∈ ρ
the disk C ∈ D centered at r does not contain any
point from P in its interior.

The latter statement implies that the open
halfplane H, whose bounding line passes through
pi and pj and such that H contains the in�nite
part of ρ, contains no point from P in its interior.
Therefore, pipj appears on ∂conv(P) and pipj does not contain any pk ∈ P, for k 6= i, j.

Conversely, suppose that pipj appears on ∂conv(P) and pipj ∩ P = {pi,pj}. Then
some halfplane H whose bounding line passes through pi and pj contains no point from
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P in its interior. In particular, the existence of H together with pipj∩P = {pi,pj} implies
that there is some disk C ∈ D such that C ∩ P = {pi,pj}. Denote by r0 the center of
C and let ρ denote the ray starting from r0 along bi,j such that the in�nite part of ρ is
contained in H. Consider any disk D ∈ D centered at a point r ∈ ρ and observe that
D \H ⊆ C \H. As neither H nor C contain any point from P in their respective interior,
neither does D. This holds for every D, and we have seen above that this statement is
equivalent to the existence of an unbounded Voronoi edge bounding VP(i) and VP(j). �

8.3 Duality

A straight-line dual of a plane graph G is a graph G ′ de�ned as follows: Choose a point
for each face of G and connect any two such points by a straight edge, if the corresponding
faces share an edge of G. Observe that this notion depends on the embedding; that
is why the straight-line dual is de�ned for a plane graph rather than for an abstract
graph. In general, G ′ may have edge crossings, which may also depend on the choice of
representative points within the faces. However, for Voronoi diagrams is a particularly
natural choice of representative points such that G ′ is plane: the points from P.

Theorem 8.10 (Delaunay [2]) The straight-line dual of VD(P) for a set P ⊂ R2 of n > 3
points in general position (no three points from P are collinear and no four points
from P are cocircular) is a triangulation: the unique Delaunay triangulation of P.

Proof. By Lemma 8.9, the convex hull edges appear in the straight-line dual T of VD(P)

and they correspond exactly to the unbounded edges of VD(P). All remaining edges
of VD(P) are bounded, that is, both endpoints are Voronoi vertices. Consider some
v ∈ VV(P). According to Corollary 8.8(b), v is incident to exactly three Voronoi regions,
which, therefore, form a triangle4(v) in T . By Corollary 8.8(d), the circumcircle of4(v)

does not contain any point from P in its interior. Hence 4(v) appears in the (unique by
Corollary 5.17) Delaunay triangulation of P.

Conversely, for any triangle pipjpk in the Delaunay triangulation of P, by the empty
circle property the circumcenter c of pipjpk has pi, pj, and pk as its closest points from
P. Therefore, c ∈ VV(P) and�as above�the triangle pipjpk appears in T . �

It is not hard to generalize Theorem 8.10 to general point sets. In this case, a
Voronoi vertex of degree k is mapped to a convex polygon with k cocircular vertices.
Any triangulation of such a polygon yields a Delaunay triangulation of the point set.

Corollary 8.11 |VE(P)| 6 3n− 6 and |VV(P)| 6 2n− 5.

Proof. Every edge in VE(P) corresponds to an edge in the dual Delaunay triangulation.
The latter is a plane graph on n vertices and thus has at most 3n− 6 edges and at most
2n− 4 faces by Corollary 2.5. Only the bounded faces correspond to a vertex in VD(P).
�
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Figure 8.4: The Voronoi diagram of a point set and its dual Delaunay triangulation.

Corollary 8.12 For a set P ⊂ R2 of n points, the Voronoi diagram of P can be con-
structed in expected O(n logn) time and O(n) space.

Proof. We have seen that a Delaunay triangulation T for P can be obtained using
randomized incremental construction in the given time and space bounds. As T is a
plane graph, its number of vertices, edges, and faces all are linear in n. Therefore, the
straight-line dual of T�which by Theorem 8.10 is the desired Voronoi diagram�can be
computed in O(n) additional time and space. �

Exercise 8.13 Consider the Delaunay triangulation T for a set P ⊂ R2 of n > 3 points
in general position. Prove or disprove:

a) Every edge of T intersects its dual Voronoi edge.

b) Every vertex of VD(P) is contained in its dual Delaunay triangle.

8.4 Lifting Map

Recall the lifting map that we used in Section 5.3 to prove that the Lawson Flip Algorithm
terminates. Denote by U : z = x2 + y2 the unit paraboloid in R3. The lifting map
` : R2 → U with ` : p = (px,py) 7→ (px,py,px

2 + py
2) is the projection of the x/y-plane

onto U in direction of the z-axis.
For p ∈ R2 let Hp denote the plane of tangency to U in `(p). Denote by hp : R2 → Hp

the projection of the x/y-plane onto Hp in direction of the z-axis (see Figure 8.5).

Lemma 8.14 ||`(q) − hp(q)|| = ||p− q||
2, for any points p,q ∈ R2.
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p

U

`(p)

q

`(q)

hp(q)

Hp

Figure 8.5: Lifting map interpretation of the Voronoi diagram in a two-dimensional
projection.

Exercise 8.15 Prove Lemma 8.14. Hint: First determine the equation of the tangent
plane Hp to U in `(p).

Theorem 8.16 For p = (px,py) ∈ R2 denote by Hp the plane of tangency to the unit
paraboloid U = {(x,y, z) : z = x2 + y2} ⊂ R3 in `(p) = (px,py,px

2 + py
2). Let H(P) :=⋂

p∈P H
+
p the intersection of all halfspaces above the planes Hp, for p ∈ P. Then the

vertical projection of ∂H(P) onto the x/y-plane forms the Voronoi Diagram of P
(the faces of ∂H(P) correspond to Voronoi regions, the edges to Voronoi edges, and
the vertices to Voronoi vertices).

Proof. For any point q ∈ R2, the vertical line through q intersects every plane Hp,
p ∈ P. By Lemma 8.14 the topmost plane intersected belongs to the point from P that
is closest to q. �

8.5 Point location in a Voronoi Diagram

One last bit is still missing in order to solve the post o�ce problem optimally.

Theorem 8.17 Given a triangulation T for a set P ⊂ R2 of n points, one can build in
O(n) time an O(n) size data structure that allows for any query point q ∈ conv(P)
to �nd in O(logn) time a triangle from T containing q.

The data structure we will employ is known as Kirkpatrick's hierarchy. But before
discussing it in detail, let us put things together in terms of the post o�ce problem.

Corollary 8.18 (Nearest Neighbor Search) Given a set P ⊂ R2 of n points, one can build
in expected O(n logn) time an O(n) size data structure that allows for any query
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point q ∈ conv(P) to �nd in O(logn) time a nearest neighbor of q among the points
from P.

Proof. First construct the Voronoi Diagram V of P in expected O(n logn) time. It has
exactly n convex faces. Every unbounded face can be cut by the convex hull boundary
into a bounded and an unbounded part. As we are concerned with query points within
conv(P) only, we can restrict our attention to the bounded parts.2 Any convex polygon
can easily be triangulated in time linear in its number of edges (= number of vertices).
As V has at most 3n − 6 edges and every edge appears in exactly two faces, V can
be triangulated in O(n) time overall. Label each of the resulting triangles with the
point from p, whose Voronoi region contains it, and apply the data structure from
Theorem 8.17. �

8.5.1 Kirkpatrick's Hierarchy

We will now the develop the data structure for point location in a triangulation, as
described in Theorem 8.17. For simplicity we assume that the triangulation T we work
with is a maximal planar graph, that is, the outer face is a triangle as well. This can
easily be achieved by an initial normalization step that puts a huge triangle Th around
T and triangulates the region in between Th and T (in linear time).

The main idea for the data structure is to construct a hierarchy T0,. . . ,Th of triangu-
lations, such that

� T0 = T ,

� the vertices of Ti are a subset of the vertices of Ti−1, for i = 1, . . . ,h, and

� Th is a single triangle only.

Search. For a query point x the triangle from T containing x can be found as follows.

Search(x ∈ R2)

1. For i = h,h− 1, . . . , 0: Find a triangle ti from Ti that contains x.

2. return t0.

This search is e�cient under the following conditions.

(C1) Every triangle from Ti intersects only few (6 c) triangles from Ti−1. (These will
then be connected via the data structure.)

(C2) h is small (6 d logn).

2We even know how to decide in O(logn) time whether or not a given point lies within conv(P), see
Exercise 4.22.
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