Department of Computer Science | Institute of Theoretical Computer Science | CADMO
Prof. Emo Welzl and Prof. Bernd Gärtner
Mittagsseminar Talk Information |
Date and Time: Tuesday, March 24, 2015, 12:15 pm
Duration: 30 minutes
Location: OAT S15/S16/S17
Speaker: Matthew Kwan
We consider several situations where "typical" structures have certain spanning substructures (in particular, Hamilton cycles), but where worst-case extremal examples do not. In these situations we show that the extremal examples are "fragile" in that after a modest random perturbation our desired substructures will typically appear.
Our first theorem is that adding linearly many random edges to a dense k-uniform hypergraph typically ensures the existence of a perfect matching or a loose Hamilton cycle. We outline the proof of this theorem, which involves a nonstandard application of Szemeredi's regularity lemma to "beat the union bound"; this might be of independent interest. Our next theorem is that digraphs with certain strong expansion properties are pancyclic. This implies that adding a linear number of random edges typically makes a dense digraph pancyclic. Our final theorem is that perturbing a certain (minimum-degree-dependent) number of random edges in a tournament typically ensures the existence of multiple edge-disjoint Hamilton cycles. All our results are tight.
This is joint work with Michael Krivelevich and Benny Sudakov.
Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)
Previous talks by year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996
Information for students and suggested topics for student talks
Automatic MiSe System Software Version 1.4803M | admin login