Department of Computer Science | Institute of Theoretical Computer Science | CADMO
Prof. Emo Welzl and Prof. Bernd Gärtner
Mittagsseminar Talk Information |
Date and Time: Tuesday, September 24, 2019, 12:15 pm
Duration: 30 minutes
Location: OAT S15/S16/S17
Speaker: Bettina Speckmann (TU Eindhoven)
Let R = {R1, R2, . . . , Rn} be a set of regions and let X = {x1, x2, . . . , xn} be an (unknown) point set where xi lies in Ri. Region Ri represents the uncertainty region of xi. We consider the following question: how fast can we establish order if we are allowed to preprocess the regions in R? The preprocessing model of uncertainty uses two consecutive phases: a preprocessing phase which has access only to R followed by a reconstruction phase during which a desired structure on X is computed. Recent results in this model parametrize the reconstruction time by the ply of R, which is the maximum overlap between the regions in R. We introduce the ambiguity A(R) as a more fine-grained measure of the degree of overlap in R. We show how to preprocess a set of d-dimensional disks in O(n log n) time such that we can sort X (if d = 1) and reconstruct a quadtree on X (if d is greater or equal to 1 but constant) in O(A(R)) time. If A(R) is sub-linear, then reporting the result dominates the running time of the reconstruction phase. However, we can still return a suitable data structure representing the result in O(A(R)) time.
In one dimension, R is a set of intervals and the ambiguity is linked to interval entropy, which in turn relates to the well-studied problem of sorting under partial information. The number of comparisons necessary to find the linear order underlying a poset P is lower-bounded by the graph entropy of P. We show that if P is an interval order, then the ambiguity provides a constant-factor approximation of the graph entropy. This gives a lower bound of (A(R)) in all dimensions for the reconstruction phase (sorting or any proximity structure), independent of any preprocessing; hence our result is tight. Finally, our results imply that one can approximate the entropy of interval graphs in O(n log n) time, improving the O(n2.5) bound by Cardinal et al.
Joint work with Ivor van der Hoog, Irina Kostitsyna, and Maarten Löffler.
Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)
Previous talks by year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996
Information for students and suggested topics for student talks
Automatic MiSe System Software Version 1.4803M | admin login