Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar Talk Information |

**Date and Time**: Thursday, November 07, 2013, 12:15 pm

**Duration**: 30 minutes

**Location**: OAT S15/S16/S17

**Speaker**: Kerstin Weller (Univesity of Oxford)

In recent years there has been a growing interest in random graphs sampled uniformly from a suitable structured class of (labelled) graphs, such as planar graphs. In particular, bridge-addable classes have received considerable attention. A class of graphs is called bridge-addable if for each graph in the class and each pair u and v of vertices in different components, the graph obtained by adding an edge joining u and v must also be in the class. The concept was introduced in 2005 by McDiarmid, Steger and Welsh, who showed that, for a random graph sampled uniformly from such a class, the probability that it is connected is at least 1/e.

We generalise this result to relatively bridge-addable classes of graphs, which are classes of graphs where some but not necessarily all of the possible bridges are allowed to be introduced. We start with a bridge-addable class A and a host graph H, and consider the set of subgraphs of H in A. Our connectivity bound involves the edge-expansion properties of the host graph H. We also give a bound on the expected number of vertices not in the largest component. Furthermore, we investigate whether these bounds are tight, and in particular give detailed results about random forests in balanced complete multipartite graphs.

Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)

Previous talks by year: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M | admin login