Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Theory of Combinatorial Algorithms

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar (in cooperation with A. Steger, D. Steurer and B. Sudakov)

Mittagsseminar Talk Information

Date and Time: Thursday, November 03, 2016, 12:15 pm

Duration: 30 minutes

Location: OAT S15/S16/S17

Speaker: Gregory Gutin (Royal Holloway University of London)

A Multivariate Approach for Checking Resiliency in Access Control

In recent years, several combinatorial problems were introduced in the area of access control. Typically, such problems deal with an authorization policy, seen as a relation $UR \subseteq Users \times Resources$, where $(u, r) \in UR$ means that user u is authorized to access resource r. Li, Tripunitara and Wang (2009) introduced the Resiliency Checking Problem (RCP), in which we are given an authorization policy, a subset of resources $P$, as well as integers $s \ge 0$, $d \ge 1$ and $t \geq 1$. It asks whether upon removal of any set of at most $s$ users, there still exist $d$ pairwise disjoint sets of at most $t$ users such that each set has collectively access to all resources in $P$. This problem possesses several parameters which appear to take small values in practice. We thus analyze the parameterized complexity of RCP with respect to these parameters, by considering all possible combinations of $|P|, s, d, t$. In all cases, we are able to settle whether the problem is in FPT, XP, W[2]-hard, para-NP-hard or para-coNP-hard. The main theorem to prove FPT can be used for other applications.

Upcoming talks     |     All previous talks     |     Talks by speaker     |     Upcoming talks in iCal format (beta version!)

Previous talks by year:   2024  2023  2022  2021  2020  2019  2018  2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996  

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M   |   admin login