Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar Talk Information |

**Date and Time**: Tuesday, September 22, 2009, 12:15 pm

**Duration**: This information is not available in the database

**Location**: OAT S15/S16/S17

**Speaker**: Tobias Müller (Tel Aviv Univ., Israel)

Let $X_1,\dots, X_n$ be independent, uniformly random points from $[0,1]^2$. We prove that if we add edges between these points one by one by order of increasing edge length then, with probability tending to 1 as the number of points $n$ tends to $\infty$, the resulting graph gets its first Hamilton cycle at exactly the same time it loses its last vertex of degree less than two. This answers an open question of Penrose and provides an analogue for the random geometric graph of a celebrated result of Ajtai, Komlós and Szemerédi and independently of Bollobás on the Erdős-Rényi random graph.

We are also able to deduce very precise information on the limiting probability that the random geometric graph is Hamiltonian analogous to a result of Komlós and Szemerédi on the Erdős-Rényi random graph. The proof generalizes to uniform random points on the $d$-dimensional hypercube where the edge-lengths are measured using the $l_p$-norm for some $1<p\leq\infty$. The proof can also be adapted to show that, with probability tending to 1 as the number of points $n$ tends to $\infty$, there are cycles of all lengths between $3$ and $n$ at the moment the graph loses its last vertex of degree less than two.

Time permitting, I will speak about a number of additional results on Hamilton cycles in the random geometric graph.

Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)

Previous talks by year: 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M | admin login