Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Theory of Combinatorial Algorithms

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar (in cooperation with A. Steger, D. Steurer and B. Sudakov)

Mittagsseminar Talk Information

Date and Time: Tuesday, August 27, 2013, 12:15 pm

Duration: 30 minutes

Location: OAT S15/S16/S17

Speaker: May Szedlák

On the Cheeger Inequality for Simplicial Complexes

The lower bound of the Cheeger inequality for a graph G estabilishes a connection between the spectral and expansion properties of the graph, namely \lambda(G) \leq h(G), where \lambda(G) is the second smallest eigenvalue of the Laplacian of G and h(G) the Cheeger constant. We consider a generalization of the above inequality for simplicial complexes. Parzanchevski, Rosenthal and Tessler showed, that for suitable generalizations of \lambda(G) and h(G) the inequality \lambda(X) \leq h(X) holds, if X is a k-dimensional simplicial complex with complete(k-1)-skeleton. I present that \lambda(X) \leq h(X) holds for arbitrary k-dimensional simplicial complexes.

Upcoming talks     |     All previous talks     |     Talks by speaker     |     Upcoming talks in iCal format (beta version!)

Previous talks by year:   2024  2023  2022  2021  2020  2019  2018  2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996  

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M   |   admin login