Department of Computer Science | Institute of Theoretical Computer Science | CADMO
Prof. Emo Welzl and Prof. Bernd Gärtner
Mittagsseminar Talk Information |
Date and Time: Thursday, October 29, 2020, 12:15 pm
Duration: 30 minutes
Location: Zoom: conference room
Speaker: Jingqiu Ding
We study symmetric spiked matrix models with respect to a general class of noise distributions. Given a rank-1 deformation of a random noise matrix, whose entries are independently distributed with zero mean and unit variance, the goal is to estimate the rank-1 part. For the case of Gaussian noise, the top eigenvector of the given matrix is a widely-studied estimator known to achieve optimal statistical guarantees, e.g., in the sense of the celebrated BBP phase transition. However, this estimator can fail completely for heavy-tailed noise. In this work, we exhibit an estimator that works for heavy-tailed noise up to the BBP threshold that is optimal even for Gaussian noise. We give a non-asymptotic analysis of our estimator which relies only on the variance of each entry remaining constant as the size of the matrix grows: higher moments may grow arbitrarily fast or even fail to exist. Previously, it was only known how to achieve these guarantees if higher-order moments of the noises are bounded by a constant independent of the size of the matrix. Our estimator can be evaluated in polynomial time by counting self-avoiding walks via a color-coding technique. Moreover, we extend our estimator to spiked tensor models and establish analogous results.
Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)
Previous talks by year: 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996
Information for students and suggested topics for student talks
Automatic MiSe System Software Version 1.4803M | admin login