Department of Computer Science | Institute of Theoretical Computer Science | CADMO
Prof. Emo Welzl and Prof. Bernd Gärtner
Mittagsseminar Talk Information |
Date and Time: Tuesday, March 08, 2016, 12:15 pm
Duration: 30 minutes
Location: OAT S15/S16/S17
Speaker: Andrea Baggio (IFOR)
The Firefighter problem and a variant of it, known as Resource Minimization for Fire Containment (RMFC), are natural models for optimal inhibition of harmful spreading processes. Despite considerable progress on several fronts, the approximability of these problems is still badly understood. This is the case even when the underlying graph is a tree, which is one of the most-studied graph structures in this context and the focus of this paper. In their simplest version, a fire spreads from one fixed vertex step by step from burning to adjacent non-burning vertices, and at each time step $B$-many non-burning vertices can be protected from catching fire. The Firefighter problem asks, for a given $B$, to maximize the number of vertices that will not catch fire, whereas RMFC (on a tree) asks to find the smallest $B$ which allows for saving all leaves of the tree. Prior to this work, the best known approximation ratios were an $O(1)$-approximation for the Firefighter problem and an $O(\log^* n)$-approximation for RMFC, both being LP-based and matching the integrality gaps of two natural LP relaxations. We improve on both approximations by presenting a PTAS for the Firefighter problem and an $O(1)$-approximation for RMFC, both qualitatively matching the known hardness results. Our results are obtained through a combination of the LP with several new techniques, which allow for efficiently enumerating subsets of super-constant size of a good solution to reduce the integrality gap of the LPs.
Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)
Previous talks by year: 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996
Information for students and suggested topics for student talks
Automatic MiSe System Software Version 1.4803M | admin login