Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar Talk Information |

**Date and Time**: Tuesday, September 06, 2016, 12:15 pm

**Duration**: 30 minutes

**Location**: CAB G11

**Speaker**: Efi Fogel (Tel Aviv University)

We present an efficient algorithm that computes the Minkowski sum of two polygons, which may have holes. The new algorithm is based on the convolution approach. Its efficiency stems in part from a property for Minkowski sums of polygons with holes, which in fact holds in any dimension: Given two polygons with holes, for each input polygon we can fill up the holes that are relatively small compared to the other polygon. Specifically, we can always fill up all the holes of at least one polygon, transforming it into a simple polygon, and still obtain exactly the same Minkowski sum. Obliterating holes in the input summands speeds up the computation of Minkowski sums. We introduce a robust implementation of the new algorithm, which follows the Exact Geometric Computation paradigm and thus guarantees exact results. We also present an empirical comparison of the performance of Minkowski sum construction of various input examples, where we show that the implementation of the new algorithm exhibits better performance than several other implementations in many cases. The software is available as part of the 2D Minkowski Sums Package package of CGAL (Computational Geometry Algorithms Library), starting from Release 4.7. Additional information and supplementary material is available at our project page http://acg.cs.tau.ac.il/projects/rc.

Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)

Previous talks by year: 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M | admin login