# Mittagsseminar (in cooperation with J. Lengler, A. Steger, and D. Steurer)

__Mittagsseminar Talk Information__ | |

**Date and Time**: Thursday, December 09, 2021, 12:15 pm

**Duration**: 30 minutes

**Location**: OAT S15/S16/S17

**Speaker**: Kalina Petrova

## Resilience of Loose Hamilton Cycles in Random 3-Uniform Hypergraphs

Consider a random 3-uniform hypergraph H ~ H^3(np) on n vertices, where each triple of vertices form a hyperedge with probability p. In this work, we prove a resilience result for H with respect to the property of containing a loose Hamilton cycle, that is, a cycle in which consecutive edges overlap in one vertex. More specifically, we show that there is a C s.t. if p >= C n^{-3/2} log(n), H is with high probability such that any spanning subgraph of H with minimum degree at least (7/16 + o(1)) p (n-1) (n-2) / 2 has a loose Hamilton cycle. This is optimal with respect to the resilience constant, but presumably not with respect to p. We also show a corresponding result about minimum co-degree, which is optimal with respect to both the resilience constant and p. Namely, there is a C s.t. if p >= C n^{-1} log(n), H is with high probability such that any spanning subgraph of H in which each pair of vertices is in at least (1/4 + o(1)) p (n-2) edges has a loose Hamilton cycle. This is joint work with Miloš Trujić.

Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)

Previous talks by year: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M | admin login