Department of Computer Science | Institute of Theoretical Computer Science | CADMO
Prof. Emo Welzl and Prof. Bernd Gärtner
Mittagsseminar Talk Information |
Date and Time: Tuesday, May 12, 2009, 12:15 pm
Duration: This information is not available in the database
Location: OAT S15/S16/S17
Speaker: Jiří Matoušek (Charles Univ., Prague)
The Kakeya needle problem asks for the smallest area of a planar set in which one can rotate a unit-length needle. One of the surprising results in mathematics is Besicovitch's construction (sketched in the first part of the talk), showing that an arbitrarily small area suffices. A necessary condition for rotating the needle inside a set is that the set contains a unit segment of every direction - such sets are called Kakeya sets. According to Besicovitch, there exist Kakeya sets of measure zero. Yet an important conjecture in analysis asserts that a Kakeya set can't be too small, in the sense of Hausdorff dimension. An analog of that conjecture for finite fields was recently proved by Zeev Dvir, and the amazingly simple and beautiful proof will be reproduced in the second part of the talk.
May serve as an introduction to the forthcoming talk by Micha Sharir in June.
Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)
Previous talks by year: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996
Information for students and suggested topics for student talks
Automatic MiSe System Software Version 1.4803M | admin login